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ОПТИМАЛЬНЕ ЗОСЕРЕДЖЕНЕ КЕРУВАННЯ ПЕРЕНЕСЕННЯМ
ВОЛОГИ В ПОРИСТИХ СЕРЕДОВИЩАХ

Анотація. У ро боті за про по но ва но ал го ритм зна ход жен ня опти маль ної по туж ності дже -
рел для дво вимірно го квазілінійно го рівнян ня Річар дса у пря мо кутній об ласті. Ви ко рис та -
но пе ре тво рен ня Кірхго фа з мас шта бу ван ням ко ор ди нат та по туж нос тей за ну ре них дже -
рел, що дає змо гу сфор му лю ва ти без розмірну за да чу. Обґрун то ва но існу ван ня роз в’яз ку
для за дачі оптимізації во ло го пе ре не сен ня в не на си че но му по рис то му се ре до вищі. Зав дан -
ням цього досліджен ня є по шук та кої по туж ності дже рел, за ну ре них у по рис те се ре до ви -
ще, що у кінце вий мо мент часу роз поділ во ло гості буде близь ким до за да них по каз ників
або цільо вої функції. Чи сель ний роз в’я зок при зво дить до на бли жен ня опти маль них зна -
чень дже рел.

Клю чові сло ва: рівняння Річардса, керування, оптимізація, пористе середовище, пе ре -
несення вологи.

ВСТУП

Зрос тан ня дефіциту вод них ре сурсів на цей час є загаль но виз на ною світо вою
про бле мою. У се ред ньо му в світі на зро шу ван ня вит ра чається близь ко 70% за па су
води, а в за суш ли вих регіонах цей по каз ник сягає 90% [1]. З цієї при чи ни ак цен -
тується ува га на за сто су ванні та ких еко ном них ме тодів, як кра пель не зро шу ван ня.
У свою чер гу, ця технічна про бле ма по род жує низ ку склад них ма те ма тич них за дач.

Рух рідини в не на си че них по рис тих се ре до ви щах опи су ють нелінійним
рівнян ням Річар дса щодо во ло гості або на по ру [2]. Не зва жа ю чи на зовнішнє
про стий виг ляд цьо го рівнян ня, його роз в’я зан ня по в’я за не зі склад но ща ми, які
зу мов лені за лежністю сту пе ню його нелінійності від на си че ності в тріщин ках.
Зок ре ма, у разі ви ник нен ня зон на си чен ня нелінійне па ра болічне рівнян ня
Річар дса ви род жується в лінійне еліптич не рівнян ня. З іншо го боку, у надмірно
су хих зо нах ви ни ка ють ве ликі градієнти роз в’яз ку, що та кож усклад нює чи сель -
не мо де лю ван ня. Для підви щен ня ефек тив ності ал го ритмів роз в’я зан ня рівнян -
ня Річар дса його роз гля да ють або у ди вер гентній формі віднос но на по ру, або
у вигляді рівнян ня кон век тив ної ди фузії сто сов но во ло гості [3]. В окре мих ви -
пад ках це дає змо гу знач но по кра щи ти ха рак те рис ти ки ал го ритмів, але в цілому 
не усу ває основ них про блем. Останнім ча сом рівнян ня Річар дса роз в’я зу ють за -
зви чай за до по мо гою чи сель них ме тодів, на прик лад ме то дом скінчен них
різниць, скінчен них еле ментів і скінчен них об’ємів [3–13] із за сто су ван ням іте -
раційних ме тодів типу Нью то на. Однак, не зва жа ю чи на ви со ку точність та
універ сальність та ких ме тодів, їхнє за сто су ван ня по тре бує ве ли ких об чис лю -
валь них по туж нос тей. Це сти му лю ва ло за сто су ван ня чи сельних ме тодів, за сно -
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ва них на повній або час тковій ліне а ри зації нелінійно го рівнян ня Річар дса за до по -
мо гою інтег раль но го пе ре тво рен ня Кірхго фа [5, 14–16]. У де я ких ти по вих ви пад ках
поєднан ня пе ре тво рен ня Кірхго фа з по ши ре ни ми співвідно шен ня ми, що ви ко рис то -
ву ють ся в гідро логії, дає змо гу повністю лінеариз ува ти нелінійне рівнян ня Річар -
дса. Така ліне а ри зація доз во ляє знач но спрос ти ти мо де лю ван ня руху рідини в по -
рис то му се ре до вищі, зни зи ти ви мо ги до об чис лю валь них по туж нос тей та роз в’я -
за ти низ ку но вих по ста но вок за дач. До та ких за дач на ле жить, на прик лад,
опти маль не ке ру ван ня зосередженими джерелами вологи в пористому
середовищі, за допомогою якого можна підвищити ефективність систем
краплинного зрошування. Існування узагаль неного розв’язка та оптимальне
керування параболічними системами дослід жено, зокрема, у [17].

Метою статті є розроблення та обґрунтування нового чисельного методу
розв’язання задачі оптимального керування зосередженими джерелами
в ненасиченому пористому середовищі методом лінеаризації рівняння Річардса
за допомогою інтегрального перетворення Кірхгофа. 

ДВОВИМІРНА ЗАДАЧА МОДЕЛЮВАННЯ

Розглянемо задачу вертикального пе ренесення вологи в області ґрунту 
  {( , ):x y  0 01 2   x l y l, }, де l1 і l2  — ширина і глибина області
відповідно з відомою початковою вологістю, фіксованою вологістю на межі та 
заданим цільовим розподілом вологості ( , )x y  у кінцевий момент часу. Рідина 
вважається не стискуваною, тиск на систему є постійним.

Запишемо рівняння Річардса з межовими умовами першого роду:
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Тут  — во логість, 0   — не усув на во логість,   — ви со та тис ку, 
H y  ( )   — напір, Kx ( )   — во доп ро никність се ре до ви ща уздовж осі Ox, 
K y ( )  — во доп ро никність се ре до ви ща уздовж осі Oy, F x x y ym m( , )   
 L T2 0(( , ) )  — функція, що задає вплив на сис те му дже ре ла, роз та шо ва но -
го в точці ( , )x ym m  . Для функції ди фузійності уздовж осі Oy виб ра но
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У правій час тині рівнян ня (1) пред став ле но су купність дже рел по туж ності Qm , 
де 0 1  Q Q m Mm max , , ..., . Роз гля не мо за да чу для не на си че но го ви пад ку. 

Далі вва жа ти ме мо, що во доп ро никність за ося ми мож на под а ти у виг ляді 
K k kx ( ) ( )  1 , K k ky ( ) ( )  2  , де k1, k2  — коефіцієнти во доп ро ник ності
уздовж осей Ox, Oy, а k ( )  — во ло гоп ровідність. Не об ме жу ю чи за галь ності, по -
кла де мо k k1 2 . Припустимо, що [16]
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Застосуємо перетворення Кірхгофа: 
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де уведено масштабний множник Q *  для масштабування потужності джерела.

Уведемо позначення для масштабованої потужності джерел: q
Q

Q
j

j
*

 , 

 0 0 1 0 1    { }( , ): ,x y x y  — масштабована область ,  0  — її межа. Далі
розглядатимемо область U  [ , ]0 1 0 . Відповідно перетворене рівняння буде
розглянуто відносно  .

Застосовуючи перетворення Кірхгофа (3), для початкової та межових

умов (2) отримаємо 
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( )   . Усередині області рівняння (1)

перетворюється на таке [9]: 
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Запишемо спряжену задачу відносно : 
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Визначимо простір W Ubd2
1 ( ) як поповнення простору гладких в U  функцій,

що задовольняють початкові та межові умови за нормою
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Аналогічно уведемо W Ubd2
1
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де   ,  — білінійні форми, побудовані за відповідними позитивними та
негативними просторами. За оцінками в негативних нормах [17] маємо, що 

W Ubd2
1 ( ) і  W Ubd2

1 ( ) , якщо права частина (1) належить L U2 ( ) .

ЗАДАЧА ОПТИМІЗАЦІЇ

Для постановки задачі оптимізації скористаємось усередненням вологості
навколо точок. Позначимо rm , m M1, ..., , координати центрів джерел по -
тужності qm . Цільові значення вологості   ( , , )1  розглядаємо, як усеред -
нення вологості ( , , )1    в околі  вибраних точок ( , ) s s , s S1, ..., .
Метою дослідження є пошук значень qm , m M1, ..., , що міні мізують  зна -
чення квад рата різниці між ( , , )1  s s  (розв’язком прямої задачі (4) за обра -
ними значеннями потужності джерел ~q ) та   ( , , )1 s s . Відповідно опти маль -
не керування є M-вимірним вектором потужності джерел з множини 
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Відповідно до [17] для будь-якої функції 
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рівняння (4), (5)  за зазначеним вище визначенням.
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c c1 2,  const, для оператора задачі (10), (11) випливає існування та єдиність
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узагальненого розв’язку цієї задачі в тому розумінні, що для будь-яких 
( , , )    з області визначення оператора спряженої задачі (6), (7) має місце рівність

( , ( )) ( , ) ( , , )*L q q F dUm m m
m

M

U

       

       

1

,                      (12)

де U  [ , ]0 1 0 . 
Поділимо обидві частини виразу (12) на  і спрямуємо  до 0. Отримаємо

співвідношення

lim ,
( )

( , ) ( ,*

 
     

 









     

0 1

L
q

q Fm m m
m

M
    , ) .

U

dU (13)

Позначимо lim
( )

( )
 









  

0

 q
q  . Маємо

lim ( , ( )) ( , ) ( , , )*


      

 
     0 1

L q q Fm m m
m

M

U

    dU . (14)

З апріорних оцінок у негативних нормах || || || ||* L Wc L
bd2 2
11 


  




c
W bd

2
2
1|| || , c c1 2,  const, випливає існування єдиного узагальненого розв’язку 

( , , )    задачі (6), (7), який підставимо у співвідношення (14). Розглянемо
відповідний приріст функціонала якості 

J q dU
U

(~) (( ( , , ) ( , , )) )         2 ;

     J q J q q J q q q q q( ) ( ) ( ) ( )[ ( ) ( ) ( , , )]           2
U

dU .         (15)

Зі співвідношення (15) граничним переходом за  0 отримаємо

lim
( )

( )[ ( ) ( , , )]
 

   


  0
2


 

J q
q q dU

U

. (16)

Співставляючи вирази (14) і (16), отримаємо

( ' ( ), ) ( , ) ( , , )J q q q F dUm m m
Um

M
      


      

1

,

а отже функціонал якості диференційовний за Гато і його похідна має вигляд




    
J

q
F dU m M

m
m m

U

( , ) ( , , ) , , ...,       1 , (17)

де ( , , )    — розв’язок задачі (6), (7).

МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ПРОЦЕСУ ЗВОЛОЖЕННЯ

Після переходу до постановки задачі з лінійним оператором виконуємо
дискретизацію за часом та просторовими координатами. Основою для
розв’язання поставленої задачі слугує варіаційний метод за Тихоновим. Та -
кий підхід дає змогу перейти до системи рівнянь, що поєднують мо де лю -
вання та оптимізацію, включаючи побудову спряженої системи та спряжених 
операторів. 
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Для дослідження враховуємо умову стійкості явної схеми ~  h2

2
 для

дискретизації. Обчислення проводились з просторовим кроком h  1

20
 та

часовим кроком ~  10 4. Далі  будемо вважати n , n  усередненими за

просторовою областю навколо вузла сітки значеннями в момент часу ~  n.  
Застосуємо варіаційний алгоритм на основі використаного у [15] для

двовимірної задачі, замінюючи похідні за простором та часом на їхнє різницеве
наближення (наведемо явну схе му).

1. Розв’язати пряму задачу: за відомим поточним наближенням потужності
кожного джерела qm , m M1, ..., , знайти розподіл безрозмірного аналога вологи 

 i j
n i j

n, , , 









20 20
10 4  , i j, , ..., 0 20, на кожному часовому кроці n N1, ..., ,

за розподілом вологи в початковий момент часу:

       ik
n

ik
n

i k
n

ik
n

i k
n

ik
n

ik
n

h


  


 


 1

1 1
2

12 2
~

ik
n

h

 1
2




  


2

2
41 1

1

 ik
n

ik
n

i k m
m

M

h
F q  ( , ) , ik

0 0  . (18)

2. Розв’язати спряжену задачу: у правій частині виконується порівняння
отриманих значень безрозмірного аналога вологості у кінцевий або однаковий
із цільовою функцією момент часу:





 


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 
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n
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1
1
1 1

1
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2
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1
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2 
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

 ik

n
ik
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h




 





2
2

21
1

1
1 

ik
n

ik
n

ik
n

ik
n

h
( ) ,   ik

N  0. (19)

3. Визначити нову апроксимацію потужності джерел qm , m M1, ..., ,
з урахуванням розв’язку спряженої задачі. Нове наближення значення інтен сив -
ності джерел обчислимо двома способами. 

Перший спосіб аналогічний до запропонованого у [15]:

q qm
r

m
r

r m

 
 

1
0 0


 ,   r  0 1, ... (20)

Дру гий спосіб вра хо вує похідну від пра вої час ти ни за по тужністю з пер шо -
го рівнян ня та ап рок си мацію функції роз в’яз ку спря же но го рівнян ня на основі
от ри ма них точ ко вих зна чень. Апроксимація будується ана логічно до (17) для
кож ної по туж ності дже ре ла, інтег рал об чис люється чи сель ним на бли жен ням за
відомими значеннями в точках: 

q q F dUm
r

m
r r

m m
U

      1  ( , ) ( , ) .        (21)

Крок r  є ітераційним кроком переходу до нового на бли жен ня і може

змінюватись. Доданок m
0  є розв’язком спряженого рівняння у тій самій точці,

де розташоване m-те джерело для початкового моменту часу. Зупинка
алгоритму може відбутись за точністю або за кількістю ітерацій, коли можемо
записати для номера ітерації r r 0 1, , ..., max .
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ЧИСЕЛЬНИЙ ЕКСПЕРИМЕНТ

Не обмежуючи загальності, продемонструємо роботу алгоритму для одно -
вимір ного випадку з цільовою функцією, заданою в останній момент часу,
щоб зменшити кількість обчислень, не змінюючи при цьому ідею методу. Для 
моделювання джерел уведемо функції, що відповідають розташуванню
джерела у точці 0.5: 

F x x x
1

5 0 4 06
0

( ) , . . ,
;

  



та
інакше

F x
x

x x2

2200
1

100
05

0 4 06

0

( )
( . )

, . . ,
  

 




 


та

інакше;










F x
x x x

x x x3

100 40 0 4 05
100 60 05 06( )

, . . ,
, . .

   
    

та
та ,

.0 інакше







Вочевидь, що ці функції є обмеженими та належать до простору L U2 ( ) , до
того ж друга та третя є неперервними. Для іншого розташування джерел
використаємо зміщення аргументу під час підстановки.

Вва жа ти ме мо, що пер ше дже ре ло зна хо дить ся у точці 0.75 та має опти маль ну 
по тужність 0.2, дру ге дже ре ло роз та шо ва не у точці 0.25 та має опти маль ну по -
тужність 0.4. На основі цих по туж нос тей будується функція  ( , )1  як ре зуль тат
мо де лю ван ня з цими по туж нос тя ми. У ре зуль таті чи сель но го ек спе ри мен ту з по -

чат ко вим на бли жен ням до по туж ності, яка дорівнює нулю, та множ ни ком r 10
от ри ма но такі ре зуль та ти: по каз ни ки табл. 1 від повіда ють підхо ду за фор му ла ми
(18), (19) та (21), табл. 2 — за фор му ла ми (18), (19) та (20). Функцію для мо де лю -
ван ня дже рел виб и ра ли одну і ту саму для обох дже рел. Умо вою зу пин ки за

точністю є до сяг нен ня функціона лом ( ) i
N

i
N

i



  2

0

20
 зна чен ня 10 6  або мен шо го 

за точ ка ми роз бит тя відрізка з кро ком h  1

20
.

З таблиць 1 та 2 випливає, що в обох варіантах отримано достатньо точний
розв’язок, але градієнтний метод потребує меншої кількості ітерацій до зупинки
за точністю.
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Функція 
F i k( , )   з (18)

Кількість
ітерацій до

зупинки
алгоритму за

точністю 

Отримане значення 
потужності у разі

зупинки за
точністю

(оптимальна
потужність 0.2 та 0.4)

Значення
потужності після 

100 ітерацій
(оптимальна
потужність 
0.2 та 0.4)

Значення
функціонала якості
після 100 ітерацій

Функція-
сходинка F1 ( ) 49

0.2024938857

0.3974886516

0.2000141915

0.3999826870
3.925637374  10 11

Функція-
півеліпс F2 ( ) 43

0.2029929565

0.3966800860

0.2001288328

0.3998275281
2.510580483  10 9

Трикутник  
F3 ( ) 43

0.2025014188

0.3969245786

0.2002821324

0.3997040769
9.941294655  10 9

Т а б  л и ц я  1. Ре зуль та ти об чис лен ня за варіаційним ме то дом з роз ра хун ком
інтег ра ла



Для дво вимірної за дачі було виз на че но дже ре ла з ко ор ди на та ми (0.25, 0.25) 
та (0.75, 0.75) відповідно. Зна чен ня функції   ( , , )1  у вуз лах сітки от ри ма но як
ре зуль тат мо де лю ван ня з по тужністю дже рел 0.1 та 0.2 відповідно. Множ ник r

дорівнює 400, а функція у правій час тині пред став ляється у вигляді 
F F F( , ) ( . ) ( . )          1 1 1 1025 025  ,
F F F( , ) ( . ) ( . )          2 2 1 1025 025  

для першого експерименту та

F F F( , ) . ( . ) ( . )           1 1 2 20 75 025 025 ,
F F F( , ) . ( . ) ( . )           2 2 2 20 75 025 025

— для дру го го ек спе ри мен ту.

Умо вою зу пин ки за точністю є до сяг нен ня функціона лом ( )
,

 ik
N

ik
N

i k



  2

0

20

зна чен ня 10 6  або мен шо го зна чен ня за точ ка ми сітки роз бит тя пло щи ни.
У пер шо му ви пад ку зу пин ка за точністю відбу лась на 15-й іте рації з ре зуль та -
том по туж ності дже рел 0.10028 та 0.19979, у дру го му ви пад ку — на 29-й іте -
рації з ре зуль та том 0.10059 та 0.1994. Отже, в обох ви пад ках от ри ма но зна чен -
ня, близь ке до опти маль ної по туж ності 0.1 та 0.2 відповідно.

ВИСНОВКИ

Дослідже но за да чу опти маль но го ке ру ван ня зо се ред же ни ми дже ре ла ми для
рівнян ня Річар дса вер ти каль но го пе ре но су во ло ги у по рис то му се ре до вищі
для роз гля ну тої за дачі. Зап ро по но ва ний варіаційно-градієнтний ме тод дає
змо гу до сяг ти опти маль ної по туж ності дже ре ла з ви со кою точністю, мо ди -
фікація  при швид шує збіжність порівня но з іте раційним про це сом на основі
ли ше роз в’яз ку спря же ної за дачі. Зап ро по но ва ний підхід легко поширити на
задачу керування координатами джерел.
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Функція 
F i k( , )   з (18)

Кількість
ітерацій до

зупинки
алгоритму за

точністю 

Отримане значення 
потужності у разі

зупинки за
точністю

(оптимальна
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Значення
потужності після 
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D.A. Klyushin, S.I. Lyashko, N.I. Lyashko, A.A. Tymoshenko 
OP TI MAL LUMPED CON TROL OF WA TER TRANS PORT IN PO ROUS ME DIA

Abstract. An algorithm for finding the optimal source power for the two-dimensional
quasi-linear Richards equation for a rectangular region is proposed. The Kirchhoff transformation 
with scaling of coordinates and powers of buried sources is used, which allows formulating a
dimensionless problem. The existence of the solution for the problem of optimizing moisture
transfer in an unsaturated porous medium is substantiated. The task of this study is to find the
power of sources buried in a porous medium — such that at the final moment of time the
distribution of humidity will be close to the given indicators or the objective function. The
numerical solution leads to an approximation of the optimal мalues of the sources.
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