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A NOVEL ROBUST META-MODEL FRAMEWORK
FOR PREDICTING CROP YIELD PROBABILITY
DISTRIBUTIONS USING MULTISOURCE DATA'

Abstract. There is an urgent need to better understand and predict crop yield responses to
weather disturbances, in particular, of extreme nature, such as heavy precipitation events,
droughts, and heat waves, to improve future crop production projections under weather
variability, extreme events, and climate change. In this paper, we develop quantile regression
models for estimating crop yield probability distributions depending on monthly temperature and
precipitation values and soil quality characteristics, which can be made available for different
climate change projections. Crop yields, historical and those simulated by the EPIC model, are
analyzed and distinguished according to their levels, i.e., mean and critical quantiles. Then, the
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crop yield quantiles are approximated by fitting separate quantile-based regression models. The
developed statistical crop yield meta-model enables the analysis of crop yields and respective
probabilities of their occurrence as a function of the exogenous parameters such as temperature
and precipitation and endogenous, in general, decision-dependent parameters (such as soil
characteristics), which can be altered by land use practices. Statistical and machine learning
models can be used as reduced form scenario generators (meta-models) of stochastic events
(scenarios), as a submodel of more complex models, e.g., Integrated Assessment model (IAM)
GLOBIOM.

Keywords: extreme events, climate change, food security, crop yields projections, probability
distributions, quantile regressions, robust estimation and machine learning, two-stage STO.

INTRODUCTION

Extreme weather conditions, such as high temperature, heat waves, declining rainfall,
prolonged heavy precipitation, can lead to gradual crop yield declines or even abrupt
crop production shocks and, therefore, to profit losses, threats to food security and
market volatility. Due to climate change, frequency and severity of extreme events is
projected to increase [1-6].

There is a need to better understand crop yield responses to weather disturbances,
especially, of extreme nature, and relevant land use and soil management practices, i.e.,
conservation tillage to improve crop yields towards desirable production levels. Crop
yield prediction is very challenging in the face of extreme high-impact events. Such
events can happen rarely but cause major production losses and require high ex-post
adaptation costs and expensive actions. Therefore, gaining earlier information about the
likelihood of critical yields and the accounting for the extreme rare-high impact events
is essential for farmers, crop insurers, agricultural market managers, for taking
informative and timely strategic and operational (long- and short-term) ex-ante and
ex-post mitigation and adaptation economic and management decisions.

The two main approaches widely used to assess the impacts of weather, climate
change, and soil parameters on crop yields are:

a) process-based simulation models, e.g., EPIC [5-8], which attempt to represent
key dynamic processes affecting crop yields, and

b) statistical models, which estimate functional relationships between historical
observations of weather, soil characteristics and yields [9-12].

In this paper we develop a hybrid meta-model for generating stochastic
crop-yield scenarios based on historical data and on input-outputs of a dynamic
process-based crop yield simulation model EPIC [5, 6]. The linkage of the statistical
and the process-based approaches into a meta-model for crop yields simulation
combines the strengths and avoids the limitations of statistical and bio-physical
models if they are used separately.

The crop yields can be distinguished according to their levels, i.e., critical
quantiles (5th, 25th, 50s, 75th, and 95th) as well as mean values. Often, the critical
quantiles (percentiles) can be identified by the so-called break-even analysis of the
crop producer. In this case, the “break-even” yield balances out crop production costs
and profits from crops sails at given crop price, which is important for establishing
adequate premium and coverage policies of agricultural insurance [13-16].

The meta-model developed in this paper aims at analyzing and predicting
probabilities of critical crop yield levels (scenarios) based on monthly temperature
and precipitation values, different climate change scenarios (i.e., RCPs), and on soil
quality characteristics, which can be altered by soil and water management practices
and by weather conditions. In particular, we introduce a quantile-based regression
model for the prediction of crop yield percentiles using historical data and
inputs/outputs of the EPIC model. The developed crop-yield meta model can be used
to generate stochastic crop yield scenarios to be included into more complex
Integrated Assessment Models (IAMs), e.g., (stochastic) GLOBIOM model [17-20].
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Large-scale global IAMs cannot effort direct integration/linkage of more advanced
generators of stochastic events. In this case, designing a reduced form generator of
pseudo-events based on a trained statistical or/and machine learning model (e.g.,
a neural network) offers a simple and practical solution.

The remainder of the manuscript is organized as follows. Section 1 discusses
motivations for developing a robust quantile-based meta-model for estimating crop yields
probability distributions, which can be non-normal, non-symmetrical, skewed and with
heavy tails due to extreme weather conditions in combination with soil properties.
Section 2 presents a short overview of the two main approaches, process-based simulation
models and statistical models, to analyze the impacts of weather variability, climate
change, soil parameters and practices on crop yields. Section 3 outlines robust statistical
and machine learning approaches to predict crop yield probability distributions. Data and
selected results of the studies are presented in Section 4 and Conclusions summarize main
conclusions and directions of further studies.

1. CROP YIELD ANALYSIS

1.1. Non-normal probability distributions of stochastic parameters and
percentile-based criteria functions. Uncertainties and risks are inherent in
agricultural practices.

Stochastic variables relevant to agricultural activities, e.g., crop yields, weather
parameters, costs, can be characterized by probability distributions (parametric or
nonparametric) functions or by probabilistic scenarios. A probability distribution can
be non-normal, heavy tailed and even multimodal.

Low yields can cause imbalances in grain supply-demand chains and thus lead to
prices increase, market disturbances, trade bans, affecting food security. It is essential that
such events are accounted for in planning models, which inform decision-makers, to design
adequate mitigation and recovery policies to ensure policy targets, such as food security,
remain feasible in the face of stochasticity. A first step towards this endogenization of risk
in planning and economic models is the development of tools capable to reproduce such
events in a robust manner, e.g., crop yield meta models and emulators.

1.2. Two-stage stochastic optimization model for robust statistical estimation
and decision-making. Statistical and machine learning problems for analyzing and
predicting agricultural variables, including estimation of crop yields probability
distributions, can be formulated as stochastic optimization (STO) problems [19-22]
optimizing some goodness of fit criteria. If stochastic parameters are non-normal with
(heavy) tails, The Mean-Variance, Ordinary Least Square (OLS) or Root Mean
Squared Error (RMSE)-based estimates can be misleading, and the effects can be
different for different subsets of data sample as well as the estimates have to be
revised when additional information about stochastic parameters arrive. For statistical
estimation and machine learning problems in the presence of non-normal and possibly
multimodal probability distributions it is more natural to use the median or other
quantile-based criteria instead of the mathematical expectation.

Because of rare events (“observations” in the tails of probability distributions)
and short periods of available historical observations, the data for statistical estimation
and machine learning can be only partial or incomplete, i.e., incomplete “learning”.
The ex-ante parameter estimation in the conditions of incomplete “learning” may
require subsequent revisions and corrections after additional information about the
uncertain parameter realization becomes known (i.e., after “learning” or partial
“learning” of uncertain parameters values). Which means, that the ex-ante estimates can
incur the costs for their correction, revision, or reversion. The estimates based on
Mean-Variance, Ordinary Least Square (OLS) or Root Mean Squared Error (RMSE)
can require considerable revisions, while quantile-based criteria provide robust
estimates not very sensitive to newly acquired observations information.

Thus, the solutions of the optimization problem in the face of uncertainty are of
the two types (two-stage) [18-20, 22-24]. The ex-ante solutions X correspond
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to decisions taken in front of uncertainties before complete or partial observations of
uncertain parameters @ may become available, whereas the ex-post solutions y
describe all future actions to be taken in different time periods in response to the
environment created by the chosen ex-ante x and the newly observed value of the
uncertain parameter « in that specific time period.

1.3. Basic model of a two-stage parameter estimation and decision-making. Let
us illustrate the concept of the two-stage decision making and robust statistical estimation
problem with an example of a simplest two-stage STO model. Assume, a random variable
o represents some stochastic parameter, for example, uncertain demand, resource
availability (water, energy, land), a crop yield, a weather parameter (temperature,
precipitation, solar radiation). The choice of the decision variable x, x > x > 0, such that
x is as close, in some sense, to stochastic w as possible (x ~ w), can be associated with
a function f(x,w) reflecting costs of overestimation and underestimation of w. In this
case, it makes sense to introduce two types of decision variables (x, y). The variable x to

meet @ can be written asx =w — y* (w) + ¥y~ (@) , where y* (w) = max {0, x — w} and
v (w)=max {0, w —x}. Decision variable x defines the first-stage decisions, while

decision variables y(w)=(y" (w), y~ (w)) correspond to the second-stage correction
decisions dependent on the scenario (realization, observation) of w. Then, the function
f(x,w) is a random piecewise linear function f (x,w)=max {ay” (@), By~ (w)} =
=max {a(x — w), B(w — x)}, where « is the cost for overestimation/surplus (e.g., the cost
for storage) and 3 is the cost for underestimation/shortage (e.g., the cost for imports).

The problem is to find the level that is “optimal”, in a sense, for all foreseeable
random scenarios/observations . The expected cost criterion leads to the
minimization of the following nonsmooth function:

F(x)=E(x 0)=Emax {a(x - o), B(w —x)} (D
subject to x > x>0 for a given upper bound x. This stochastic minimax problem
is a two-stage stochastic programming with two types of decisions (x, y(w)) [24].

The STO problem (1) can be solved using an iterative solution procedure based
on the stochastic quasigradient (SQG) methods [23-27]. Function F'(x) is convex,
therefore, the SQG algorithm can be defined as the following discontinuous adaptive
machine learning process:

1 = min {max {0, x¥ — p,EX LX) k=0,1,2, ...,

where Ek =qa, if the current level of x* exceeds the observed w and Ek =-f

otherwise, p, is a positive step size.
The SQG method is a convergent with probability 1 sequential
estimation/solution procedure, which can be viewed as an adaptive machine learning

process able to learn the optimal level x* through sequential adjustments of its current

levels xo,xl,xz,...,xk ,... to observable (or simulated) scenarios/observations

wo, wl, wz, . wk, .... It can be used as a general statistical and machine learning

algorithm when addition observations of uncertain parameter  can arrive and the solution
x has to be revised accordingly. The use of quantile-based criteria leads to nonsmooth
optimization problems deriving robust solutions (models), which do not deteriorate too
much because of estimating and training with new or slightly different data.
Minimization of the goal function (1) provides quantile-type characteristics of
the optimal solutions [15, 16, 18-22, 28]. For example, if the distribution of w has
a density, «, >0, then the optimal solution x minimizing F (x) is the quantile
determined as B
Priov <x}=

2)

a+p’
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1.4. General quantile-based regression model. Section 1.3 presents the
simplest quantile-based two-stage STO model for robust estimation and decision
making. Let us formulate a general two-stage stochastic optimization problem
representing the quantile-based regression. In traditional regression estimation
problem, the conditional expectation provides a satisfactory representation of
stochastic dependencies when they are well approximated by two first moments, e.g.,
for normal distributions. Assume that a random function u(v) for each element v from

a set V' corresponds a random element u(v) of the set U. Assume that R/,

UcR' LetPisa joint probability measure on the pairs 6 = (, v) of random variables
u and v. The regression function is defined as the conditional mathematical expectation

r)=E(u|v)=[uPU|v). (3)
It is easy to see that r(v) minimizes the functional (providing it is well defined)
F (x(v)) = E(u(v) = x(v))*, )
where Euz(v)< 00, Exz(v)< 00,
For general (possibly, multimodal) distributions it is more natural to use the

median or other quantiles instead of the expectation. Let us define the quantile
regression function "y (v) as the maximal value y satisfying equation

P(u(v) 2 ylv)=p(), )
where 0< p(v)<1. It can be shown that quantile regression function r,(v)
minimizes the functional

F(x(v))=E(p()x(v) +max {0, u(v) — x(v)}). (6)
The minimization of a more general functional (7) is similar to problem (1),
where a(v), a(v), B(v) represent possible costs for observations v associated with
over or underestimation of regression dependencies:

F(x(v)) = E(a(v)x(v) + max {a()(u(v) —x(v)), f)x@) —u@)}). (7
The costs or prices a(v), a(v), B(v) can be a results of another, e.g., a general or
partial equilibrium model. Thus, the robust estimation of x(-) can be considered as
a part of a decision-making process when estimation model is integrated into
a decision-making model. Minimization of (7) is reduced to the minimization of

(6) with p(v) =(a + B)(a + ﬂ)_l. The median corresponds to the case when a =0,

a =f. The existence of optimal solution requires a< a.

Assuming "y (v) in (6) is a convex function for all v €V, F(x) is also a convex
function. If " (v) is a linear function for all v €V, then F (x) can be minimized by
linear programming methods.

2. BIO-PHYSICAL AND STATISTICAL CROP YIELD MODELS

In this paper we develop a robust meta-model based on quantile regression for
generating stochastic crop-yield scenarios using historical data and input—outputs
of a dynamic process-based crop yield simulation model EPIC. The development
of the meta-model contributes to the research on the proper tools for linking
reduced form stochastic scenario generators (e.g., of crop yields) with large scale
land use and agriculture planning models, e.g., GLOBIOM. The linkage of the
statistical and the process-based approaches into a hybrid meta-model for crop
yields simulation combines the strengths and avoid the limitations of statistical
and bio-physical models if they are applied separately. For example, process-based
models may fail to properly account for extreme weather conditions, while there
may be no sufficient data for statistical models reflecting crop yield responses to
various soil and water management practices. Let us shortly introduce the
statistical and the process-based models, in particular, the EPIC model.
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2.1. Dynamic process-based crop yield simulation models. Dynamic
process-based crop yield simulation models were developed primarily to simulate the
growth of crops, along with the associated phenomena that influence crop growth such
as temperature, water and solute movement in soils. The models build upon the
physiological laws and understanding of plant and soil processes, to develop
biologically meaningful equations, to predict crop yield and other phenotypes
(Biophysical models in land evaluation). The models can provide explicit though often
simplistic explanations of the interactions between crops yields, weather parameters,
soil quality, environmental conditions in different phases of the crop growth cycle.
Dynamic simulation models have been used in global gridded crop yield assessment
studies (Global gridded crop models, GGCMs) to evaluate how climate change and
agricultural management might impact crop yields [11, 29]. To enable model
intercomparison the Agricultural Model Intercomparison and Improvement Project
(AgMIP) and the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP)
provide common modelling protocols describing a harmonized simulation setup. From
the ISIMIP conclusions, the bio-physical crop models unfortunately often are not
capable to correctly model the crop response to changing weather parameters, thus, they
often underestimated yield decline, and underestimation can be strong in the conditions
of droughts and heat waves.

2.1.1. EPIC model. Dynamic process-based crop yield simulation model EPIC is
one of the models involved in AgMIP and ISIMIP studies. Initially, it was developed
by the USDA to assess how agricultural activities affect the status of US soil and
water resources [7, 8, 30, 31]. The major components in EPIC are modules
representing crop growth, yield and competition, weather simulation, hydrological,
nutrient and carbon cycling, soil temperature and moisture, soil erosion, tillage, and
plant environment control. Different soil and plant management options are available,
including tillage operations, irrigation scheduling, fertilizer application rates and
timing. The model offers options for simulating yields with different Potential
Evapotranspiration (PET) equations, which allows sensitivity analysis of model’s
results with respect to alternative models’ components. EPIC-IIASA runs the EPIC
model for more than 120,000 spatial simulation units (SimUs) that are derived from
intersecting soil and topography units, administrative borders and climate grids
following a set of criteria for internal homogeneity of SimU. A large set of crop
management scenarios (crop varieties, fertilization and irrigation options, and soil
conservation practices) and climate change projections simulated for each SimU are
a common workload for the EPIC-IIASA model.

In the present studies on the development of the crop yield meta-model we use
Pan-European version of the EPIC-IIASA model with relevant data and results derived
for EU countries [5, 6], which will be describe with more details in Section 4.

2.2. Statistical crop yield models. As an alternative to dynamic process-based crop
yield simulation models, there are models that use observations of soil, weather, and other
relevant parameters and crop yields to develop statistical models that functionally relate
the former to the latter. These models become increasingly popular with the growing
availability of data and various statistical and machine learning tools and software.
The necessary data can come from experimental field measurements, farmer surveys,
official government statistics, or some combination of these and other sources. The data
may also come from process-based crop yield simulation models deriving, for example,
crop yield feedbacks to possible land, water, soil managements, which have not yet been
applied in practice and for which historical observations are not available.

The AgMIP studies [32] on the comparison of the process-based and statistical
models at many experimental sites show satisfactory agreement between the two
approaches. Statistical crop yield models can be helpful at various stages of
experimental programs, to indicate what changes in the independent variables can
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cause crop yields change toward the desirable outcomes. In this case, the covariates
(independent variables) can be distinguished as exogenous (e.g., weather conditions)
and endogenous (e.g., influenced by decisions). The later can be altered by land use
practices, crops composition, water use, etc. Missing historical observations on
responses of crop-yields to various soil practices under different climatic conditions
motivates coupling of process-based simulation with statistical crop yield models.

2.2.1. The choice of covariates for a statistical crop yield model: temperature
and precipitation parameters. Plant growth is highly dependent on precipitation and
temperature. Temperature is a primary factor affecting the rate of plant development.
Warmer temperatures expected with climate change and the potential for more
extreme temperature events will impact plant productivity. Temperature effects are
increased by water deficits and excess soil water demonstrating that understanding the
interaction of temperature and water will be needed to develop more effective adaptation
strategies to offset the impacts of greater temperature extreme events associated with
a changing climate. Different regions of the world can benefit or suffer from the gradual
climate change affecting seasonal and monthly patters of temperature and precipitation
[33-35]. It is also expected that adverse effects could happen largely because of extreme
climate events, such as droughts and heavy precipitation events, requiring probabilistic
analysis of crop yields depending on weather parameters.

2.2.2. The choice of covariates for a statistical crop yield model: soil
characteristics. The soil characteristics are very important variables in statistical models,
for example, the relation between crop yields and soil organic carbon (SOC) in different
soil layers. Carbon stored in the soil can help improve other soil physical properties such
as infiltration rate, water-holding capacity, soil structure, and other physical properties. At
the same time, carbon storage can improve the quality of soil nutrient pools and other
chemical properties. Such soil practices as tillage and plant residues recycling affect SOC
and soil structure, thereby influencing the physio-chemical and hydrothermal soil
conditions which control the GHG fluxes and can impact GHG emission and soil carbon
sequestration. Keeping plant residues is critical not only for soil nutrients, but also for soil
protection from wind and water erosion [36].

2.3. Challenges in crop yield simulation modeling: data mining, harmonization,
and downscaling. Crop yield simulation models are very data demanding. A constant
challenge is the shortage of reliable data for model calibrations, validation,
verification, and practical studies at the required spatio-temporal resolutions. In this
case, various data mining, harmonization, and rescaling (e.g., downscaling)
approaches are developed to fill the data gaps, recover unobservable local data and
enable data harmonization from various sources and scales. Data (down and up)
scaling and harmonization approaches can be considered as crop yields meta-models
utilizing data and results of models at one resolution to derive results at different
resolutions. For example, Folberth et al. [30] develops a model for crop yields
analysis and rescaling (downscaling) based on extreme gradient boosting and random
forests machine learning approaches.

The statistical quantile-based meta-model developed in this paper can operate at
different resolutions and provides and effective means for scaling EPIC results.

3. ROBUST STATISTICAL ESTIMATION AND MACHINE LEARNING
APPROACHES TO PREDICT CROP YIELD PROBABILITY DISTRIBUTIONS

Machine learning models have been often used for crop yield prediction, including
random forest, neural networks, convolutional neural networks, recurrent neural
networks, etc. However, due to the often black-box nature of these models, the
tractability of the results is not straightforward. Also, the prediction accuracy is
sensitive to model structure and parameter calibration, and it can be difficult to
explain the accuracy or inaccuracy of the derived results.
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3.1. Multivariate linear regression model. A (multiple) linear regression (MLR)
can be considered as one of the machine learning algorithms, which is in fact one of the
most popular models in machine learning. It is widely used because it is simple and
tractable. The simplicity means it is easy to understand the responses of the dependent
variables to each covariate, i.e., the regression coefficient of an independent variable
reflects the change in the dependent variable as a result of a unit-change in the respective
independent variables. On the other hand, the MLR assumes that the residuals are
normally distributed, which means that it will fail to properly capture the effects of
extreme conditions in the independent variables. It uses the method of least squares to
calculate the conditional mean of the dependent variable across different values of the
covariates. The linear regression model for calculating the mean takes the form

Vi=Bo +Bixit +Boxin +B3xiz + oot BrXin, (®)
where i=1,...,n is a number of observations and m is a number of covariates.
Coefficients of the MLR are found by minimizing the Mean Square Error
“Goodness-of-Fit” function

MSE = (y; — (Bo +B1x;1 +Boxia + oot BruXim )7,

which gives the “best regression line”.

Crop yield distributions can be negatively skewed or even multimodal because of
biological constraints that limit plants growth in response to various, often
cumulative, combinations of weather parameters (precipitation, temperature, pressure,
etc.), which have complex temporal and spatial patters. For statistical estimation and
machine learning problems in the presence of non-normal, heavy tailed and possibly
multimodal probability distributions it is more natural to use the median or other
quantile-based criteria instead of the mathematical expectation.

3.2. Multivariate Quantile regression model. Unlike regular linear regression,
the quantile regression estimates are more robust against outliers. For these studies, the
conditional quantile functions are of a major interest also for investigating and
predicting the probability distributions of dependent variables based on key factors such
as temperature, precipitation, and soil characteristics.

Let us first introduce a notion of a quantile (percentile) function of a random
variable. Quantiles are values that divide probability distribution of a random variable
into a specific number of intervals (continuous) with equal probabilities. Assume that
a random variable X has a continuous and strictly monotonic cumulative distribution
function Fy :R —[0,1], Fy (x) =P(X <x). The p-quantile function of X, Oy (p),
returns the value x such that F'y (x) = Pr(X <x)= p, which can be rewritten as the

inverse of the cumulative distribution function Q(p) = F );1 (x)=inf {x: Fy (x) = p}.

For a random sample X, X,,..., X,,... with empirical distribution function

F y (x), the pth empirical quantile function can be defined as Q(p):ﬁ )El(x):

=inf {x F v (x) = p}. The pth empirical quantile can be determined by solving the
minimization problem

Q(P)=argnﬁnx{ 2 plX;—x|+(-p) 3 IX,-—XI}-

i X;>x i|X;<x

Quantile regression is an extension of linear regression that is used when the
conditions of linear regression are not met (i.e., linearity, homoscedasticity,
independence, or normality).

For the quantile regression we make an assumption, that the pth quantile is given
as a linear function of the explanatory variables. In the case of the empirical
regression and random observations of dependent and independent variables
Y1,Y5,...., X, and X{,X,,..., X,,..., the coefficients B(z) of the tth empirical
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quantile regression can be determined by solving the minimization problem
D rmax (0,Y; - f'(0)X ;) + (- )ymax (0, B'(1)X; — ¥;)) )

or problem !

Z max (7(Y; - B'(0)X;), A=1)(B'(DX; —Y;)), (10)

which is similar to the problem in Section 1.3. The minimization problem can be
reduced to a linear programming problem.

For quantile regression, it is possible to calculate any quantile (percentage) for
particular values of the dependent variables. Solving the problem for all 7 €[0, 1], it is
possible to recover the entire conditional quantile function, i.e., the conditional
distribution function, of Y. If t =0.5 the minimization problem derives the median.
Taking a similar structure to the linear regression model, the “best” quantile
regression model equation for the tth quantile is

Or (¥)=Bo(@) +B1(Dx;1 + B2 [@x;2 +B3(0)x;3 + oot By (DX
where i=1,...,n is a number of observations and m is a number of covariates
(independent variables). Coefficients f3,, (r) are functions of the required quantile 7.
They are defined as

ﬂ(r)=argminﬂ€Rm{ Y dv-p@X - Y \Y,-—ﬂ’(r)X,-I},(ll)

i\Y;zp'(m) X, i Yi<p'(m) X,

where Y; are observations of dependent variables, X; is a vector of independent
variables X; =(x;1, ..., X;;, ), and B(7) is a vector of coefficients §(z) = (8 (), ...
oot By (), and m is a number of observations.

4. SELECTED RESULTS

4.1. Data. In these studies, we use the Pan-European version of the EPIC-IIASA
model with relevant data and results derived for EU countries [5, 6]. In this EPIC
version, the daily meteorological data were obtained from the Joint Research Centre’s
(JRC) Crop Growth Monitoring System (CGMS) meteorological database [37] at
a 50 km grid resolution for the period 1995-2007. Weather variables include daily
and monthly averages of precipitation, maximum temperature, and minimum
temperature, solar radiation.

Land cover information was taken from a combined CORINE 2000 and
PELCOM map at 1 km resolution provided by JRC. Digital terrain information was
derived from SRTM (Shuttle Radar Topographic Mission; [38]) and GTOPO sources
(Global 30 Arc Second Elevation Data; http://eros.usgs.gov).

Soil data [39] can be obtained from the European Soil Bureau Database (ESBD
v. 2.0), including the Soil Geographic Database of Europe, the Soil Profile Analytical
Database of Europe, the Pedo-Transfer Rules Database, the Database of Hydraulic
Properties of European Soils and the Map of Organic Carbon Content in topsoils in
Europe. Soil data can be considered as time-invariant factors, however, they are
affected by various land use and soil practices. For these, the historical data on crop
yield responses to weather parameters under certain practices (and thus soil
properties) may become available from EPIC simulations.

Agricultural statistics on crop yields and fertilizer consumptions were retrieved
from the Statistical Office of the European Communities (EUROSTAT) and
IFA/FAQ datasets. Information on rainfed and irrigated crop areas were taken from
the European Irrigation Map (EIM).

4.2. Selected results. The data for the statistical model were harmonized at the
resolution of about 120,000 EPIC SimUs. The SimUs are represented, as a rule, by
one area with “representative” characteristics for soil, topography, and present
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Fig. 1. Crop yield loss as the difference between the 25th and the median of the crop yield, from 2000
to 2050, in percentage terms, for rainfed maize, RCP26
weather. Since crops have different needs for water, temperature, solar radiation, and
other weather parameters in different stages of their development, the weather data
was aggregated to monthly resolution. If data is available, the quantile regression can
be estimated at the level of SimUs. In this paper, we present the results at the level of
EU NUTS administrative regions. The NUTS classification lists 92 regions at
NUTS 1, 242 regions at NUTS 2 and 1166 regions at NUTS 3 level.
Probability distributions of crop yields in different years can be analyzed
according to their critical quantiles (5th, 25th, 50s, 75th, and 95th) as well as mean
values in these years. Often, the critical quantiles (percentile) can be defined by the
so-called break-even analysis of the crop producer, e.g., specifying the costs associated
with production excess and shortage (shortfalls) as in example of section 1.3.
Figures 1 and 2 present the results at NUTS level, each color characterizes the
difference between the values of the 25th percentile and the 50th percentile (Fig. 1)
and the values of the 25th percentile and the average crop yield (Fig. 2), in percentage
terms, for years from 2000 to 2050. Here we present the results for rainfed maize
yield and for the RCP26 (early response) emission scenario. The results are displayed
for the years from 2000 to 2050 with a 10 years timestep. In general, the meta-model
results are available for all years to 2100, for different crops and RCP scenario, to
characterize probability distributions of crop yields for different climatic scenarios.
The percentage difference we define as the yield loss with respect to the reference
values (mean, median, critical value, break-even yield, etc.). From Figs. 1 and 2, the
negative effect of climate change on rainfed maize yield is especially visible in the
southern regions of Europe, i.e., in Spain, Italy, Greece. In these countries, the yield
loss to 2050 can be up to 40 percent. In different EU countries, the yield loss can
attribute to different reasons, however in southern regions it is primarily due to the
increased temperature and water deficits in specific crop growth periods.
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Fig. 2. Crop yield loss as the difference between the 25th and the average crop yield, from 2000 to 2050,
in percentage terms, for rainfed maize, RCP26
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Fig. 3. Quantiles and “best” quantile regression lines, NUTS level, Poland
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Fig. 4. Quantiles and “best” quantile regression lines, NUTS level, Estonia

Projected air temperature increases throughout the remainder of the 21st century
suggests that grain yields will continue to decrease for the major crops because of the
increase temperature stress on all major grain crops [3]. Beyond a certain point, higher air
temperatures adversely affect plant growth, pollination, and reproductive processes [40, 41].

Figures 3-5 illustrate the results of estimating the “best” quantile regression fit line
aggregated to the level of country-specific NUTS regions. As example, we take Poland,
Estonia and Italy, which represent South, Middle and North of Europe.

Visualized quantiles are 25th, 50th, and 75th. In addition, these figures display
the average crop yield for the years from 2000 to 2050. The results of the simulations
are available till 2100, but for the reasons of clarity, the displayed values are
restricted to 50 years. The estimates of the crop yields O, (y;) in each SimUs within
all NUTS regions and EU countries having probability

Prob {0, ()< Bo (@) +B1(T)x;1 + B2 (T)x;n +B3(T)x;3 +...4 By (T)Xjyy } =7 (12)

are calculated with coefficients f,,(z) (11) for each quantile 7 (percentile 1007),
where i=1,...,n is a number of observations and m is a number of covariates
(independent variables). Coefficients 3, (r) are functions of quantile. Equation (12)
means, that 1007 percent of crop yield observations is less than the value of the
7-quantile. Equation (12) provides the basis for the validation of the quantile
regression model.
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Fig. 5. Quantiles and “best” quantile regression lines, NUTS level, Italy

CONCLUSIONS

This paper develops a quantile regression model for the analysis and prediction of
crop yield distributions in the presence of weather variability, climate change, altering
soil properties. The developed model is important for crop insurers, farmers,
authorities dealing with food security considerations, agricultural market planners, etc.,
as it provides insights regarding the likelihoods of various crop yield levels. The yield
levels can be distinguished as 25th, 50th, and 75th percentiles, mean values, or
critical values, e.g., derived from the analysis of break-even crop yield.

A (multiple) linear quantile regression (MLQR) is one of the simplest machine
learning algorithms because it is easy to understand the responses of the dependent
variables to each covariate.

The analysis of probability distribution of “crop yield loss” can be useful for
farmers, insurers, other stakeholders, as a possible trigger of systemic risks in
agricultural markets, interconnected food-water-energy systems, insurance networks,
etc., the earlier information about the likelihood of critical crop yields and crop yield
losses is essential for securing food production.

The validation procedure for the estimated quantile regression models is based
on equation (12), i.e., the percentage of the crop yield observations is below the
respective estimated quantile.
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Machine learning approaches (utilizing hardly interpretable neural networks) can

be effectively combined with disciplinary or interdisciplinary models, e.g.,
agricultural, environmental, energy, etc., for effective decision-making in the
conditions of uncertainty, increasing interdependencies and complex analytically
intractable systemic (“unknown risks”).

Statistical or machine learning models can be used as reduced form scenario

generators (meta-models) of stochastic events (scenarios), as a submodel of a more
complex e.g., Integrated Assessment model (IAM) GLOBIOM [17-20].
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T. €pmoaneBa, II. I'aBauk, A. Jlecca-/lepci-Ayryctununk, E. Bop,
C. ®pank, T. Kaxia, T'. Baur, 10. baakosuu, P. Ckaabchbki,
K. ®onbepr, H. KomennantoBa, I1.C. Knomnon

HOBA HAIIMHA CTPYKTYPA METAMOJIEJI JJIsI NPOTHO3YBAHHS PO3NOALTY
HUMOBIPHOCTI BPOXKAHMHOCTI 3 BUKOPUCTAHHSAM JJAHUX I3 BAI'ATBOX JKEPEJI

AHoTanisi. 3a3HaueHo, 10 € HarajbHa MoTpeda y KpalioMy pO3yMiHHI Ta MPOTHO3YBaHHI BIUIH-
By INOTOJHUX SBHIL (30KpeMa, eKCTPEMaJbHOTO XapakTepy, SK-OT, CHJIbHHX ONAJiB, MOCYX Ta
TEIUIOBUX XBHJIb) Ha BPOXKaifHICTh CLIBCHKOTOCIOAAPChKUX KynbTyp. Lle macth 3Mory mokpariu-
TH MaiOyTHI NPOTHO3M BHUPOOHHUITBA CLIBCHKOTOCHOAAPCHKHUX KyJIbTYp B yMOBaX MiHJIMBOCTI
TIOTO/IM, €KCTPEeMaJIbHUX SIBUI Ta 3MiHHM KiIiMaTy. Po3poOiieHO KBaHTHIIBHI perpeciiini mopeni
JUIsl OL[IHIOBAHHS PO3MOJUTYy HMOBIPHOCTI BPOXAaHHOCTI CLIBCEKOIOCIIONAPCHKUX KYyJBTYP 3alIeikK-
HO BiJ MICSYHMX 3HAa4eHb TEMIIEPATYpH Ta OMAaiB Ta SIKICHUX XapaKTePUCTHK IPYHTY, SIKi MO-
KyTb OyTH HOCTYIHI JUIS pI3HHX IIPOTHO3IB 3MiHH KiiMmaTy. BpoxaiiHicTh cimbcbkorocmona-
PCBKUX KyJbTyp, ICTOpHYHY Ta cuHTe30BaHy wmonemito EPIC, ananmizyioTe Ta pO3pi3HSIOTH
BIZIMOBIZHO 10 TXHiX PiBHIB, TOOTO CepelHiX Ta KPUTUYHHUX KBaHTHIIB. Jlami KBaHTWII BpOXKaii-
HOCTI CIUJIBCHKOIOCIIOIAPCHKUX KYJIBTYp AalpOKCHMYIOTh, HAJAIITOBYKOYHM OKpPEMi MOJeNi per-
pecii Ha ocHOBI KBaHTWIIB. Po3po0iieHa CTaTHCTHYHA METaMOAECIb BPOXKAMHOCTI CLIBCHKOTOCIIO-
apChbKHX KyJbTYp la€ 3MOTY aHali3yBaTH BPOXKAHHICTH CIIBCHKOrOCIONAPCHKHX KYJIBTYp 3a-
JIOKHO BiJl TaKMX CK30ICHHHX MapaMeTpiB, SIK TEMIIEparypa Ta OHaJu, a TaKOoX CHIOTCHHHX
napaMeTpiB (HampUKIIAA, XapaKTEPUCTHK IPYHTY), SIKi MOXKYTh 3MIHIOBATHCS y pe3yJbTaTi Mpak-
THK 3eMJIeKOpHuCTyBaHHs. CTaTHCTHYHI Ta MAIIMHHI MOJE HaBYaHHS MOYKHA BHKOPHUCTOBYBATH
SIK TEHEepaTopH CLEHApilB 3MEHIIEHOT PO3MIPHOCTI Ta CTPYKTYpH (METaMoOeni) CTOXaCTUYHMX
noxii (cueHapiiB), sIK MiAMOJENb OUIBLI CKIAAHMX MOJEJeH, HANPHKIAL, MOAENI IHTErpoBaHOI
ominku (IAM) GLOBIOM.

KoarouoBi cioBa: exkcrpemanbHi moxii, 3MiHa KiiMaTy, NpOJOBONbYa Oe3reKa, MPOTHO3U BPO-
JKaWHOCTI, PO3MOJiI IMOBIpHOCTEH, KBaHTHIIBHI perpecii, HajiliHa OI[iHKA Ta MalIMHHE HaBYaH-

Hsl, JBOCTalHa 3aja4a croxacTudHoi ontumizamii (STO).
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