
UDC 004.8:519.7

A.V. LYALETSKI

EVIDENCE ALGORITHM AND SAD SYSTEMS:
PAST AND POSSIBLE FUTURE1

Abstract. The paper is devoted to the Evidence Algorithm programme on
automated reasoning initiated by Academician Glushkov in 1970 and found its
expression in the form of the Russian-language and English-language SAD
systems intended for automated deduction. Some of their characteristic
peculiarities and features are described. Examples demonstrating the possibility
of their use for solving mathematical and common problems that require
deductive constructions are supplied. Possible ways of the further development
of the English-language SAD system are given.

Keywords: Evidence Algorithm, SAD system, automated reasoning, automated
theorem proving, prover.

The center of gravity of work in this area

should be shifted from the construction of

universal theorem-proving programs to the

creation of programming systems and

operating systems allowing, if necessary, to

quickly code a proof of even a single

difficult theorem and being capable, if

needed, to work in a realtime with

a mathematician proving this theorem.

V.M. Glushkov

INTRODUCTION

In 1970, the Evidence Algorithm programme (EA) initiated by Academician

V.M. Glushkov for constructing systems for automated theorem proving in

mathematics was first presented in the paper [1]. According to it, such a system

should contain an “evidence maintaining engine” possible to make a proof search

in a mathematical theory in an environment of a formal mathematical language

understood by a computer and being as close to languages of usual mathematical

publications as possible. Besides, it should be able to accumulate an acquired

knowledge and deepen on its basis its own notion of the evidence of a machine

proof step for the enhancing of its deductive capabilities. In the case of necessity,

the system should have a possibility to attract to a proof search a human for

interactive managing a deductive process.

The beginning of work on EA dates back to 1962, when V.M. Glushkov first

spoke about the possibility of a computer to prove a theorem. Since then, Glushkov’s

programme on automated theorem proving has been carried out at different times with

varying degrees of success. In general, the entire time of research on EA can be

divided into the following stages (details can be found in [2]):

1962–1969: pre-attempts to follow EA;

1970–1976: theoretical investigations in the framework of EA led to the

appearance of the Russian language system;

12 ISSN 1019-5262. Ê³áåðíåòèêà òà ñèñòåìíèé àíàë³ç, 2021, òîì 57, ¹ 1

1 In honor of 50 years of the Evidence Algorithm announcement.

© A.V. Lyaletski, 2021

1976–1978: design and implementation of a Russian language system called

System for Automated Deduction (SAD) by V.M. Glushkov in 1980 and having the

abbreviation Russian SAD below;

1979–1986: trial operation and improvement of the Russian SAD system by

means of the building-in of a human-like proof technique into it;

1992: stopping research on EA;

1998: renewing research on EA in the light of new paradigms and advances in

automated reasoning;

2000–2002: design and implementation of an English-language modification of

the Russian SAD system that will be denoted by English SAD in what follows;

2002–2008: trial operation and improvements of the English SAD system;

2009–present: theoretical investigations on proof search in classical and

non-classical first-order logics.

And although the further development of the English SAD system was stopped in

2008, anyone can carry out a series of experiments with the system available online on

the website “nevidal.org/sad.en.html”.

EA AND RUSSIAN AND ENGLISH SAD SYSTEMS

According to EA, the scheme of actions of a mathematical computer service could

be described as follows. A user communicates with the service using texts written

in a high-level natural-type formal language. He may submit to the service

a problem like “verify whether the given text is correct”, or “what is the given text

about”, or “how to prove the following proposition”, and so on. The text, provided

it is syntactically correct, is sent to a service subsystem, a so-called “reasoner”.

The reasoner makes analysis of a problem under consideration and formulates

a number of tasks submitting them to the service’s logical engine being, as a rule,

a prover. If the prover finishes the job, the result of its work (e.g. a proof

verification trace) is displayed to the user and the work is over. If it fails then

a diagnostic is made by the service and its result supplies to the reasoner for

repairing the situation. In particular, the reasoner can decide that a certain auxiliary

proposition might be useful and starts the search for those in existing mathematical

archives. After finding it, the service begins a new proof search cycle with

a modified problem and the process goes on.

In the framework of such an approach, there were designed and implemented the

Russian SAD system in 1978 and the English SAD system in 2002.

The Russian SAD system is focused on automated theorem proving only, while the

English SAD system can also verify both mathematical and other formalized texts presented

in the so-called ForTheL language (FORmal THEory Language) [3] being as similar to the

English language of usual mathematical publications as possible, which indicates the ability

of the system for its use as a mathematical assistant in a daily practice of a human.

The ForTheL language can be viewed as a certain English modification of the

Russian TL language (Theory Language) [4] being an input language for the Russian

SAD system. As for the Russian SAD’s evidence maintaining engine, it was realized

on the basis of both the resolution technique and the sequent one using instead of the

Kanger notion of substitution admissibility, a new notion proposed by the author of

this paper in 1975 for optimizing quantifiers handling technique in the case, when the

preliminary skolemization becomes an undesirable operation.

After the collapse of the USSR and decommissioning of the ES-lines computers in

1992, the research on EA and use of Russian SAD were stopped. Investigations on the

EA programme were renewed in 1998 in the framework of the Intas-project “Rewriting

ISSN 1019-5262. Ê³áåðíåòèêà òà ñèñòåìíèé àíàë³ç, 2021, òîì 57, ¹ 1 13

Technique and Efficient Theorem Proving”, which led to the appearance of the English

SAD system (System for Automated Deduction) in 2002.

The English SAD system is based on the declarative paradigm of the presentation

of mathematical texts, containing axioms, definitions, theorems, proofs, etc., which

provides by its input ForTheL language. That is why it can be viewed as an available

mathematical assistant for theorem proving/verifying on the computer the correctness

of a chain of conclusions that leads to solving a task under consideration.

The English SAD system has linguistic, reasoning, and deductive levels of the

processing of input ForTheL-texts.

At the linguistic level, the system’s parser makes a syntactical analysis of an input

ForTheL-text, determines its structure, and defines its logical content encoded in

ForTheL statements. After this, it compiles the ForTheL-text into its internal

presentation. The result of translation is a number of goal statements to be sequentially

deduced from their predecessors. Besides, there is a module for parsing a particular

form of the first-order language, which can be used if necessary.

At the reasoning level, a goal task in question is splitting into a number of subgoal

tasks for a prover. For this, English SAD either makes reduction of the main goal to

several simpler subgoals or proposes an alternative subgoal. This module is redundant

in the case, when the English SAD system solves the problem of proving a theorem.

At the deductive level English SAD can apply one of its provers intended for

a proof search in classical first-order logic with equality. The native English SADs

prover is based on a goal-driven sequent calculus exploiting the original notion of

admissible substitutions. This permits to preserve the initial signature of a task in question

so that equations accumulated during proof search can be sent to one or another

specialized solver, e.g. to an external computer algebra system. Note that the English SAD

system was implemented in such a way that it can use one of the external (w.r.t. English

SAD) first-order provers such as Otter [5], SPASS [6], Vampire [7], or E Prover [8].

At the final stage, English SAD outputs the result of its session. Note a user can

influence to solving a task under consideration by changing some system parameters.

Now, the English SAD system can perform the following:

• Inference Search: establishing of deducibility of a first-order formula/sequent;

• Theorem Proving: proving of a proposition in an environment of a

ForTheL-text;

• Text Verification: verifying of a self-contained mathematical ForTheL-text.

Let us look at some of the distinctive features of the English SAD system.

Linguistic Features of English SAD. The following EA requirements to a formal

natural language should be satisfied. It should admit writing such mathematical units

as axioms, lemmas, auxiliary assertions, and theorems along with their proofs in order

to provide the self-containedness of a text. Besides, it should give the possibility to

introduce new definitions and use them. The language thesaurus should be separate

from the language grammar, while the language should be close to the usual

mathematical language for providing a comfort for a human in online writing and

processing of a text. At that, it should give the possibility to write first-order formulas

for establishing their validity in classical first-order logic. Additionally, it should admit

writing tasks that do not have a direct relationship to the deduction process.

The first sketch of such a language was proposed in 1972, while its final

Russian-language version TL was published in [4] in 1974.

The English-language “version” of TL under the name ForTheL was published

in [3] in 2000. The main aim of the creation of ForTheL (and TL) was to provide an

initial mathematical environment for solving deduction/verification tasks as well as for

improving linguistic capabilities of an interface between a human and computer.

14 ISSN 1019-5262. Ê³áåðíåòèêà òà ñèñòåìíèé àíàë³ç, 2021, òîì 57, ¹ 1

As in the case of usual mathematical texts, a ForTheL-text contains definitions,

assertions, assumptions, theorems, proofs, etc. At that, the syntax of ForTheL

sentences follows the syntax of usual English sentences (while TL simulate the

Russian language). A ForTheL-text consists of sections, some service constructors, and

phrases, where the phrases are either statements or assumptions. By definition,

ForTheL sections can be sentences, cases, proof sentences, and top-level sections

presenting signature extensions, definitions, axioms, lemmas, theorems, and proofs.

A top-level section presents a sequence of assumptions concluded by an affirmation.

Selections and attached proofs relate to sequences of low-level sections.

Such syntactical units as statements, predicates, notions (denoting classes of

objects) and terms (denoting individual objects) are related to sentences. They consist

of the following syntactical primitives: nouns, which form terms (e.g. “extension of”)

or notions (e.g. “subset of”), verbs, and adjectives, being predicates (such as

“additive”, “consists of”, etc.), as well as symbolic primitives using symbolic notations

for functions and predicates, allowing to construct usual logic first-order formulas in

the form of ForTheL statements. Of course, only a little part of usual English is

formalized in the ForTheL grammar.

Three kinds of sentences are in ForTheL: selections, assumptions, and

affirmations. Assumptions are used for declaring variables or for formulating some

hypotheses for a subsequent text; e.g. the following sentences are standard

assumptions: “Any subset of any set is a set.”. Selections claim the existence of

representatives of notions; for example, they can be used for declaring variables. “Take

a negative real number N.” is an example of a selection. Affirmations are ForTheL

statements (e.g. “If m is less than n and n is less than p then m is less than p.”).

The ForTheL language also contains means for representing all the first-order logic

formulas in the form of ForTheL phrases. The semantics of a ForTheL sentence is

defined as a corresponding first-order formula being the result of certain transformations.

The following syntactically correct ForTheL-text containing a theorem together

with its proof and concerning properties of compound natural numbers gives some

presentation about expressive abilities of ForTheL:
Theorem. For all nonzero natural numbers n, m, p if p m m n n* (*) (*)� then p is compound.

Proof by induction.
Let n, m, p be nonzero natural numbers. Assume that p m m n n* (*) (*)� .
Assume that p is prime.
Hence p divides n n* and p divides n. Take q n p� / . Then m m p q q* * (*)� .
Indeed p m m p p q q* (*) * (* (*))� . m n� . Indeed n m n n m m�� �� ��* * .
Hence p is compound.

qed.

It is possible to see that this text is easily readable and understandable by a

human, who is not even familiar with the ForTheL language.

Deductive Features of English SAD. Deduction in the ForTheL environment is

done in the following way. The ForTheL parser translates a self-contained input

ForTheL-text, being a structural set of ForTheL phrases, into its internal presentation,

being formulas of first-order logic. These formulas are input data for both the native

prover and external provers. At that, the native prover of the English SAD system was

designed so that the following deduction features are satisfied:

• deduction is goal-driven;

• the structure of an initial task is preserved;

• deduction is goal-driven;

• equality handling is separated from deduction;

• special equation-solving methods (i.e. the usual unification, AC-unification,

etc.) and computer-oriented equality rules (e.g. the paramodulation) can be

incorporated;

ISSN 1019-5262. Ê³áåðíåòèêà òà ñèñòåìíèé àíàë³ç, 2021, òîì 57, ¹ 1 15

• heuristic proof methods used by a mathematician in his everyday practice such

as the application of definitions and auxiliary assertions can be used;

• flexible interactive modes can be arranged.

All this was provided by using a special sequential formalism (see, for

example, [9]), which, on one hand, made it possible to comply with the above-given

features and, on the other hand, allowed constructing sufficiently efficient logical

methods for finding proofs in the signature of an initial first-order theory. An

additional reason for the selection of the sequent formalism was that sequent inferences

are more like “natural” than inferences obtained, for example, by the resolution

method. This feature becomes important when it comes to a human-computer

interaction during deduction.

As it was pointed above, such investigations began in 1962, when V.M. Glushkov

offered his view on the problem of automated theorem proving in mathematics latter

called Evidence Algorithm, which led to the appearance of a specific logical procedure

for proof search in classical first-order logic. It was based on the Kanger approach [10]

to quantifier handling and was inferior in efficiency to resolution methods, which is

caused by the fact that in the Kanger approach, there exists an additional step-by-step

examination w.r.t. different orders of quantifier rules applications, while resolution

methods avoid it due to skolemization.

Attempts to overcome this shortcoming led to the appearance of an original

sequent calculus, which uses the above-mentioned new notion of admissible

substitutions. It was incorporated in the Russian SAD system and its use demonstrated

the helpfulness of such an approach to the construction of computer-oriented sequent

calculi.

It was mentioned above that investigations on Evidence Algorithm were

suspended in 1992 and were renovated only in 1998 in the framework of the Intas

project “Rewriting Techniques and Efficient Theorem Proving”. The project gave an

impetus to the study of the possibility to construct sequent calculi in several directions,

one of which touched classical first-order logic and the others also concerned

non-classical ones (see, for example, [9,11]). As a result, there has been obtained a

wide enough range of calculi for efficient proof search in classical and intuitionistic

first-order logics as well as in their modal extensions. The research carried out for

classical logic was used in designing and realizing the English SAD logical engine

based on a sequent calculus that can be viewed as a further improvement of the

calculus used in the Russian SAD system.

Another distinctive feature of the logical engine of English SAD distinguished it

from Russian SAD is that in the case of desire, a user can use one of such well-known

automated theorem-proving systems as Otter, SPASS, Vampire, and E Prover. In some

cases, the made selection can essentially increase the speed of the proof search/proof

verification process.

Information Environment Features of English SAD. Now, the information

environment (the knowledge base in the current terminology) of English SAD is a set

of language units confirming a self-contained text intended for theorem-proving/

text-verifying, some of which can be ontologically connected [12]. This gives the

possibility to make essential influence on a machine-made proof step. Note that the

English SAD system was designed in such a way that it is possible to connect with

various mathematical services including, for example, computer algebra systems and

solvers. It is possible to develop the existent information environment in the direction

of the creation of program tools for its integration and use with various systems and

styles of formal knowledge presentation and processing.

16 ISSN 1019-5262. Ê³áåðíåòèêà òà ñèñòåìíèé àíàë³ç, 2021, òîì 57, ¹ 1

EXAMPLES

Below, two examples of the processing by the English SAD system of

ForTheL-texts (available on the English SAD system website at the pages

“nevidal.org/help-thm.en.html” and “nevidal.org/help-txt.en.html”) are presented.

The first demonstrates the ability of English SAD to establish the validity of a

childish statement (given in Proposition). It concerns the relationships between

animals and plants, is known as Schubert’s Steamroller problem, and demonstrates

a wide range of possible applications of English SAD not only for finding

solutions of purely mathematical problems, but also for solving various “ordinary”

logical tasks requiring only a correct deductive reasoning. The second one shows

the ability of the English SAD system to verify a proof of a theorem given in its

self-contained ForTheL-context. (In the first case, the Moses prover was used and

in the second one, the SPASS prover was applied.)

Example of Solving Schubert’s Steamroller Problem
[animal/-s] [plant/-s] [eat/-s]
Signature Animal. An animal is a notion.
Signature Plant. A plant is a notion.
Let A, B denote animals. Let P denote a plant.
Signature EatAnimal. A eats B is an atom.
Signature EatPlant. A eats P is an atom.
Signature Smaller. A is smaller than B is an atom.
Axiom CruelWorld. Let B be smaller than A and eat some plant. Then A eats all plants or A eats B.
Signature Bear. A bear is an animal.
Signature Fox. A fox is an animal smaller than any bear.
Signature Bird. A bird is an animal smaller than any fox.
Signature Worm. A worm is an animal smaller than any bird.
Signature Snail. A snail is an animal smaller than any bird.
Signature Millet. A millet is a plant.
Axiom Everybody. There exist a bear and a fox and a bird and a worm and a snail and a millet.
Axiom WormMillet. Every worm eats some millet.
Axiom SnailMillet. Every snail eats some millet.
Axiom BirdWorm. Every bird eats every worm.
Axiom BirdSnail. Every bird eats no snail.
Axiom BearMillet. Every bear eats no millet.
Axiom BearFox. Every bear eats no fox.

Proposition. There exist animals A, B such that A eats B and B eats some millet.

After processing this text, English SAD displays the result of its work with the task

specified in Proposition:
[ForTheL] stdin: parsing successful [Reason] stdin: theorem proving started
[Reason] line 32: goal: There exist animals A, B such that A eats B and B eats some millet.
[Reason] stdin: theorem proving successful
[Main] sections 45 – goals 1 – subgoals 3 trivial 1 – proved 1
[Main] symbols 68 - checks 58 – trivial 57 proved 0 – unfolds 0
[Main] parser 00:00.00 – reason 00:00.00 – prover 00:00.00/00:00.00
[Main] total 00:00.01

Example of Verifying a Proof of a Theorem Relating to Number Theory
In this example, iif is an abbreviation for “if and only if”.

[number/-s]
Signature NatSort. A number is a notion. Let A, B, C stand for numbers.
Signature NatZero. The zero is a number. Let X is nonzero stand for X is not equal to zero.
Signature NatSucc. The successor of A is a nonzero number.
Axiom SuccEquSucc. If the successor of A is equal to the successor of B then A and B are equal.
Signature NatSum. The sum of A and B is a number.
Axiom AddZero. The sum of A and zero is equal to A.
Axiom InjAdd. If the sum of A and B is equal to the sum of A and C then B and C are equal.
Definition DefLess. A is less than B iff B is equal to the sum of A and the successor

of some number.
Let X is greater than Y stand for Y is less than X .
Theorem NReflLess. A is not less than A.
Proof.

Assume the contrary.

ISSN 1019-5262. Ê³áåðíåòèêà òà ñèñòåìíèé àíàë³ç, 2021, òîì 57, ¹ 1 17

Take a number C such that A is equal to the sum of A and the successor of C .
Then the successor of C is zero (by AddZero, InjAdd).
We have a contradiction.

qed.

After receiving this text, English SAD establishes the correctness of the proposed

proof and displays the below-given verification trace ended by statistical data:
[ForTheL] stdin: parsing successful [Reason] stdin: verification started
[Reason] line 63: goal: Take a number C such that A is equal to the sum of A and the successor of C .
[Reason] line 65: goal: Then the successor of C is zero (by AddZero, InjAdd).
[Reason] line 66: goal: We have a contradiction. [Reason] line 60: goal: A is not less than A.
[Reason] stdin: verification successful
[Main] sections 29 – goals 4 – subgoals 5 – trivial 1 – proved 3
[Main] symbols 48 – checks 31 – trivial 31 – proved 0 – unfolds 1
[Main] parser 00:00.00 – reason 00:00.00 – prover 00:03.40/00:00.39
[Main] total 00:03.41

CURRENT STATE AND POSSIBLE FUTURE WORK

At present, the English SAD system (http://nevidal/org) can perform mathematical

text processing in the ForTheL environment according to the following scheme:

Text for proving a theorem or for verifying a theorem proof

� (applying the ForTheL parser) A self-contained set of first-order formulas

� (applying an English SAD prover) Proving a theorem or verifying a theorem proof

� (applying an editor) Text in a user-friendly form

By now, a series of experiments have been conducted with the English SAD

system. They relates to inference search in classical first-order logic, theorem proving

in the ForTheL environment, and verification of self-contained ForTheL-texts. The

most interesting examples concern verification, among which can be mentioned:

Cauchy–Bouniakowsky–Schwarz inequality for real vectors, Ramsey’s finite and

infinite theorems, Bezout’s identity in terms of abstract rings, Chinese remainder

theorem, Newman’s Lemma, Tarski’s fixed point theorem, Furstenberg’s proof of the

infinitude of primes.

A trial operation of the English SAD system and a number of current achieve

ments in automated reasoning have shown the desirability of improving the capabilities

of English SAD in the following ways (studied and not implemented).

On the linguistic level. The nearest objective can be the incorporation of the

existing ForTheL language into the LaTeX-environment in order to reach the reading

of ForTheL-formulas in the form closest to usual mathematical texts. Besides, there are

drafts of Russian and Ukrainian versions of the ForTheL language. Therefore, there

exists the possibility to construct the next bidirectional translators: English

ForTheL-texts � Russian ForTheL-texts, English ForTheL-texts � Ukrainian

ForTheL-texts, and Russian ForTheL-texts � Ukrainian ForTheL-texts, which will

give the opportunity for using such a multilingual extension of English SAD by a user,

who knows only one of these languages as well as for making an automatic translation

from one of these languages into another. (Of course, one can try to construct a

German, French, and/or other version of the ForTheL language, thereby strengthening

this multilingual English SAD’s component.)

On the reasoning level. The improving of heuristic possibilities of English SAD

is presupposed to do by incorporating in it the human-like reasoning methods

depending on the subject domain under consideration concentrating main attention on

inductive theorem proving methods.

On the deductive level. Based on research made on computer-oriented proof

search in classical and non-classical sequent logics and described in [9,10], one can try

18 ISSN 1019-5262. Ê³áåðíåòèêà òà ñèñòåìíèé àíàë³ç, 2021, òîì 57, ¹ 1

to construct a toolkit giving the possibility to “puzzle” one or another system logical ñ

depending on a desire of an English SAD user or a subject domain under

consideration.

Additionally, it is presupposed to include cloud-based technologies in possible

extensions of the English SAD system in order to improve the quality of its use for

university e-learning.

CONCLUSIONS

Features of the English SAD system indicate that the system is designed and

implemented in a way that takes into account the Evidence Algorithm’s theses and

modern achievements in the field of the building of computer mathematical

services. In this connection, note that the basis of the ForTheL language has

fundamental logical and set-theoretic operations and relations. Therefore, it is

suitable for representing any (not only mathematical) texts, if they can be

formalized by means of classical first-order logic.

Due to the great similarity of ForTheL to the languages of ordinary mathematical

publications, the English SAD system working in the ForTheL language environment

can be used for e-learning purposes such as verifying the correctness of mathematical

ForTheL-texts writing by a student, which gives the possibility to learn him the rules

of constructing correct mathematical phrases as well as to verify mathematical proofs

written by a student in ForTheL, which leads to teaching him methods for carrying out

correct deductive reasoning.

In the long run, the Evidence Algorithm approach and further development of the

English SAD system can lead to the creation of an info structure for the remote

multilingual presentation and complex processing of mathematical knowledge, which

would make it useful for both teaching and academical daily activity of a human.

REFERENCES

1. Glushkov V.M. Some problems in the theories of automata and artificial intelligence. Cybernetics

and Systems Analysis. 1970. Vol. 6, N 2. P. 17–27. https://doi.org/10.1007/BF01070496.

2. Lyaletski A., Morokhovets M., Paskevich A. Kyiv school of automated theorem proving: a historical

chronicle. Logic in Central and Eastern Europe: History, Science, and Discourse. Lanham (Md):

University Press of America, 2012. P. 431–469.

3. Vershinine K., Paskevich A. ForTheL — the language of formal theories. International Journal of

Information Theories and Applications. 2000. Vol. 7, N 3. P. 120–126.

4. Glushkov V.M., Kapitonova Yu.V., Letichevskii A.A., Vershinin K.P., Malevanyi N.P. Construction

of a practical formal language for mathematical theories. Cybernetics and Systems Analysis. 1972.

Vol. 8, N 5, P. 730–739. https://doi.org/10.1007/BF01068445.

5. Otter homepage. URL: http://www.mcs.anl.gov/research/projects/other/.

6. SPASS theorm prover. URL: https://www.mpi-inf.mpg.de/departments/automation-of-logic/software/

spass-workbench/.

7. Vampire's homepage. URL: http://www.vprover.org/.

8. The E Theorem Prover. URL: https://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html.

9. Lyaletski A. Evidence Algorithm and inference search in first-order logics. Journal of Automated

Reasoning. 2015. Vol. 55. P. 269–284.

10. Kanger S. A simplified proof method for elementary logic. In: Computer Programming and Formal

Systems. Braffort P., Hirchberg D. (Eds.). Amsterdam: North-Holland Publishing Company, 1963.

P. 87–94.

ISSN 1019-5262. Ê³áåðíåòèêà òà ñèñòåìíèé àíàë³ç, 2021, òîì 57, ¹ 1 19

11. Lyaletski A. Mathematical text processing in EA-style: a sequent aspect. Journal of Formalized

Reasoning (Special Issue: Twenty Years of the QED Manifesto). 2016. Vol. 9, N 1. P. 235–264.

12. Paskevich A., Verchinine K., Lyaletski A., Anisimov A. Reasoning inside a formula and ontological

correctness of a formal mathematical text. In: Calculemus/MKM 2007 Work in Progress, RISC-Linz

Report Series. Kauers M., Kerber M., Miner R., Windsteiger W. (Eds.). Hagenberg, Austria. 2007.

Vol. 07-06. P. 77–91.

Íàä³éøëà äî ðåäàêö³¿ 06.07.2020

Î.Â. Ëÿëåöüêèé
ÀËÃÎÐÈÒÌ Î×ÅÂÈÄÍÎÑÒÈ ² ÑÈÑÒÅÌÈ SAD: ÌÈÍÓËÅ ÒÀ ÌÎÆËÈÂÅ ÌÀÉÁÓÒÍª

Àíîòàö³ÿ. Ðîáîòó ïðèñâÿ÷åíî ïðîãðàì³ «Àëãîðèòì Î÷åâèäíîñò³», ùî áóëà
³í³ö³éîâàíà àêàäåì³êîì Â.Ì. Ãëóøêîâèì ó 1970 ðîö³ ³ çíàéøëà ñâîº âò³ëåí-
íÿ ó âèãëÿä³ ðîñ³éñüêîìîâíî¿ òà àíãëîìîâíî¿ ñèñòåì SAD, ïðèçíà÷åíèõ äëÿ
àâòîìàòèçîâàíîãî ïðîâåäåííÿ äåäóêö³¿. Íàäàíî îïèñ ¿õí³õ õàðàêòåðíèõ ðèñ
òà îñîáëèâîñòåé. Íàâåäåíî ïðèêëàäè, ÿê³ äåìîíñòðóþòü ìîæëèâ³ñòü ¿õ âèêî-
ðèñòàííÿ äëÿ ðîçâ’ÿçàííÿ ìàòåìàòè÷íèõ ³ ïîâñÿêäåííèõ çàäà÷, ùî ïîòðåáó-
þòü âèêîíàííÿ äåäóêòèâíèõ ïîáóäîâ. Îïèñàíî ìîæëèâ³ øëÿõè ïîäàëüøîãî
ðîçâèòêó àíãëîìîâíî¿ ñèñòåìè SAD.

Êëþ÷îâ³ ñëîâà: Àëãîðèòì Î÷åâèäíîñò³, ñèñòåìà SAD, àâòîìàòèçàö³ÿ ì³ðêó-
âàíü, àâòîìàòèçàö³ÿ ïîøóêó äîâåäåíü òåîðåì, ïðóâåð.

À.Â. Ëÿëåöêèé
ÀËÃÎÐÈÒÌ Î×ÅÂÈÄÍÎÑÒÈ È ÑÈÑÒÅÌÛ SAD: ÏÐÎØËÎÅ È ÂÎÇÌÎÆÍÎÅ ÁÓÄÓÙÅÅ

Àííîòàöèÿ. Ðàáîòà ïîñâÿùåíà ïðîãðàììå «Àëãîðèòì Î÷åâèäíîñòè», èíèöè-
èðîâàííîé àêàäåìèêîì Â.Ì. Ãëóøêîâûì â 1970 ã. è íàøåäøåé ñâîå âîïëî-
ùåíèå â âèäå ðóññêîÿçû÷íîé è àíãëîÿçû÷íîé ñèñòåì SAD, ïðåäíàçíà÷åííûõ
äëÿ àâòîìàòèçèðîâàííîãî ïðîâåäåíèÿ äåäóêöèè. Äàíî îïèñàíèå èõ õàðàêòåð-
íûõ ÷åðò è îñîáåííîñòåé. Ïðèâåäåíû ïðèìåðû, äåìîíñòðèðóþùèå âîçìîæ-
íîñòü èõ èñïîëüçîâàíèÿ äëÿ ðåøåíèÿ ìàòåìàòè÷åñêèõ è ïîâñåäíåâíûõ çà-
äà÷, òðåáóþùèõ âûïîëíåíèÿ äåäóêòèâíûõ ïîñòðîåíèé. Îïèñàíû âîçìîæíûå
ïóòè äàëüíåéøåãî ðàçâèòèÿ àíãëîÿçû÷íîé ñèñòåìû SAD.

Êëþ÷åâûå ñëîâà: Àëãîðèòì Î÷åâèäíîñòè, ñèñòåìà SAD, àâòîìàòèçàöèÿ
ðàññóæäåíèé, àâòîìàòèçàöèÿ ïîèñêà äîêàçàòåëüñòâ òåîðåì, ïðóâåð.

Lyaletski Alexander Vadimovich,
Candidate of Physical and Mathematical Sciences, Senior Researcher, National University of Life and
Environmental Sciences of Ukraine, Kyiv, e-mail: a.lyaletski@nubip.edu.ua.

20 ISSN 1019-5262. Ê³áåðíåòèêà òà ñèñòåìíèé àíàë³ç, 2021, òîì 57, ¹ 1

