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Abstract. In this work we build the security estimations of Poseidon hash
function against non-binary linear and differential attacks. We adduce the
general parameters for the Poseidon hash function that allow using this hash
function in recurrent SNARK-proofs based on MNT-4 and MNT-6 triplets.
We also analysed how to choose S-boxes for such function for this choice to be
optimal from the point of view of the number of constraints and security. We
also showed how many full rounds is sufficient to guarantee security of such
hash function against non-binary linear and differential attacks and calculated the
number of constraints per bit that is achieved in the proposed realizations
demonstrating a considerable gain was demonstrated, as compared to the
Pedersen hash function.

Keywords: SNARK, constraints, Poseidon hash function, non-binary linear and
differential cryptanalysis.

INTRODUCTION

One of the most important problems arising in construction of SNARK-proofs and

STARK-proofs [1–3] is reduction of the number of constraints describing

algorithms in the respective SNARK-system. The construction of such proofs

begins with the fact that a certain transformation (for example, a hash function)

should be described as a system of certain equations of many variables over a

finite field, the left part of which contains a polynomial of many second degree

variables, and the right part — a polynomial of many variables of the first degree.

These equations are called constraints, and their complexity determines the

complexity of constructing the appropriate SNARK-proof. Most often

SNARK-proofs are used to prove knowledge of the pre-image of some hash

function. Therefore, the hash functions used in such blockchains should be

designed so that they can be described by as few constraints as possible.

One of the first hash functions convenient for constructing SNARK-proofs was

the Pedersen hash function [4, page 134]. It is based on operations in a group of points

of an elliptic curve, which, in turn, can be reduced to operations in the corresponding

finite field. Since constraints are polynomials just over such a field, the number of

constraints required to specify such a hash function is ten times less than for

“classical” hash functions that operate with byte and bit operations (about 1.68

constraints per 1 bit of input). This number of constraints is quite acceptable, but the

question of reducing it still remains relevant. The Poseidon hash function proposed

in [5] appeared to be quite a good construction with respect to the number of

constraints. For this function, the number of constraints is up to 15 times smaller than

for the Pedersen hash function. Utilization of this function in SNARK-systems requires

provision of a full substantiation of its security against the main applicable

cryptographic attacks. The Poseidon hash function is based upon the SPONGE

construction [6] that uses the HADES block cipher algorithm [7] as the inner

permutation. For this reason, the main part of the security substantiation for the

Poseidon hash function is to show that the HADES algorithm is indistinguishable from

ISSN 1019-5262. Ê³áåðíåòèêà òà ñèñòåìíèé àíàë³ç, 2021, òîì 57, ¹ 2 115

1 This work was supported in part by the National Research Foundation of Ukraine under Grant
2020.01/0351.

© L. Kovalchuk, R. Oliynykov, M. Rodinko, 2021



a random permutation [5, 6]. The authors of the HADES algorithm, and later the

authors of the Poseidon hash function adduced very detailed substantiations for

security of these constructions against some class of attacks they called “algebraic

attacks”. However, for these algorithms, substantiation of security against linear and

differential cryptoanalysis attacks was to a large extent empirical, and requires further

analysis to achieve a strict formal substantiation. E.g. in substantiation of the algorithm

security against linear attacks, the authors considered coordinate functions of S-boxes

demonstrating that in fact they analyzed its security against classical linear attacks.

However, as shown in [8, 9], for non-binary ciphers it is necessary to analyze security

specifically against non-binary linear cryptoanalysis, as both the key adder and the

linear layer use operations in the prime field instead of binary operations. The similar

situation takes place with respect to the differential cryptanalysis.

The purpose of this paper is to obtain security estimates of Poseidon hash function

against non-binary linear and differential attacks, show how many full rounds would

be sufficient to guarantee security of such hash function against these attacks, adduce

the general parameters for the Poseidon hash function that allows using this hash

function in recurrent SNARK-proofs.

1. MATHEMATICAL MODEL OF POSEIDON.

The Poseidon hash function [5] uses SPONGE construction [6] with a permutation

named HadesMiMC [7] inside it (see Fig. 1).

Three parameters describe this construction: capacity c, rate r, and permutation

length N , where N c r� � . From some practical consideration, we are interested in

case when N p� 3[log ] , c p� 2[log ] , r p� [log ] , where prime p is of the special

form, which provides compatibility with triplets MNT-4 or MNT-6 in CODA (now —

MINA) [10. 11]. Any permutation or block cipher may be used inside SPONGE. The

authors of [7] suggested to use HadesMiMC as the permutation that needs the least

number of constraints per bit, when used in SNARK-systems. HadesMiMC may be

considered as a block cipher whose round functions are different in different rounds.

The main idea of HadesMiMC is to use rounds with full number of S-boxes and rounds

with partial number of S-boxes (for example, only 1 S-box). The general scheme of

Hades is given in the Fig. 2 (this Figure is taken from [7] with all its designations,

which are wide used for block ciphers). Such construction allows reducing the number

of constraints, while preserving security level against different (statistical and

algebraic) attacks.

116 ISSN 1019-5262. Ê³áåðíåòèêà òà ñèñòåìíèé àíàë³ç, 2021, òîì 57, ¹ 2

Fig. 1. SPONGE construction



Now we describe the mathematical

model of the permutation HadesMiMC

on which Poseidon is based.

Let p be a large prime, l is its bit

length, l p� log .

Define a bijection s F Fp p: � as

s x x pu( ) � mod , where ( , )u p� �1 1.

For some t N� define values

x C Fp
t, ( )� as x x xt� � �( )� 1 ,

C c ct� ( , ..., )1 , where x c Fi i p, � ,

i t�1, . For x Fp
t�( ) define two

mappings: S F Fp
t

p
tfull :( ) ( )� and

S F Fp
t

p
tpart :( ) ( )� as

S x s x s xt
full ( ) ( ( ) ( ))� � �� 1 ,

S x x x s xt
part ( ) ( , ( ))� � �� 2 1 .

(1)

Finally, define an MDS-matrix

A F Fp
t

p
t:( ) ( )� of the size t t	 .

Define the round functions for

the permutation HadesMiMC. They

are of two types: the round function

with a full S-box layer that is defined

as f F F
C p

t
p

tfull :( ) ( )� , where for arbitrary C Fp
t�( ) :

f x A S x C
C
full full( ) ( * )� � , (2)

and the round function with a partial S-box layer that is defined as

f F F
C p

t
p

tpart :( ) ( )� , where for arbitrary C Fp
t�( ) :

f x A S x C
C
part part( ) ( * )� � , (3)

where x C x c x ct t* ( )� � � � �� 1 1 and “+” is field addition (addition modulo p) and

S full , S part were defined in (1).

Definition 1. A HadesMiMC-like permutation with parameters p t u r, , , full , and

rpart is the family of permutations H F F
p t u r r

p
t

p
t

C

( , , , , )
:( ) ( )full part � parameterized by

the set of round constants C � � � �( )C C r r1 2�
full part

, C Fi p
t�( ) that are defined as

H x
p t u r r

C

( , , , , )
( )full part �

�
� � �

f f f
C C Cr r r r r2 1 2full part full part full

full full
��� �

� �r r r

f f f x
C C C

part full full

part part full full
��� � �

1 1

( ) . (4)

If parameters p t u r, , , full , and rpart are set, we will write HC , for simplicity.

Note. The transformation (4) means that, for fixed set of constraints

C � � � �( )C C r r1 2�
full part

, we first apply functions f f
C Cr1

full full

full

� �� , i.e., functions of the
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type (2) with a full S-box layer and with corresponding “round keys” C Cr1� ��
full

, and

they are the first rfull rounds of the transformation. Then we apply functions of the

type (3) with a partial S-box layer during rpart round and with corresponding “round

keys;” and then again apply rfull rounds with functions of the type (2).

2. CRYPTOGRAPHICAL SECURITY OF POSEIDON

2.1. Security in the random Oracle model. Security of SPONGE construction

depends mostly on the security of its internal permutation, HadesMiMC in our

case. So we will pay a lot of attention to security of HadesMiMC. It was proven

in [12] that if an internal permutation is modeled as a randomly chosen

permutation, then the SPONGE function is indistinguishable from the random

oracle up to 2 2ñ/ calls to it.

For some practical aspects, it is convenient to set c l p� 2 ( ) , so the maximal

security level of the SPONGE construction is l p( ) . It means that we should prove that

the security level of the internal permutation is also not less than l p( ) . But we will use

stronger requirement to find the number of rounds of the permutation.

In what follows, under security estimations against differential and linear

cryptanalysis of block cipher we will understand the maximum of average (on keys)

probabilities of its differential and linear characteristics, respectively.

2.2. Security against linear and differential attacks. In this chapter we

construct, rigorously proved, security estimates for HadesMiMC against these two

types of statistical attacks. Note that to construct estimates against differential attacks,

we mostly use known results or their generalizations. But to construct the similar

estimates against linear attacks, we had to prove a few non-trivial statements on sums

of characters of the additive group of the finite field.

2.2.1. Security estimates of non-binary cipher HadesMiMC against
differential cryptanalysis. To construct security estimations against differential

cryptanalysis, we consider HadesMiMC as a block cipher. Further we use the

following results.

Definition 2 [13]. The block cipher E with the round function

f M K M: 	 �

(where M is an Abelian group w.r.t. some operation “*, ” 0 is its neutral element)

is called a Markov cipher w.r.t. “* ” if 
 �x M, ,� � :

1 1
01

| |
( ( , * )* ( , ) , )

| |
( ( , )* ( , )

K
f k x f k x

K
f k f k

k K

� � � � ��

�

�� �

�
� 1, )�

k K

, (5)

where � is the Kronecker symbol: �( , )
,

, .
x y

x y� ��


�

1

0

if

else

Note. This definition can be easily generalized for the case when the round

functions are different.

Definition 3 [14]. The branch number of the matrix A F Fp
t

p
t:( ) ( )� of the size

t t	 is

br A wt Ax wt x
x Fp

t
( ) min ( ) ( )

( ) \( ,..., )
� �

� 0 0
{ },

where wt is the Hamming weight.
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Note that if A is an MDS-matrix, then its branch number is maximal possible (for

its size) and is equal to br A t( ) � �1. For example, in our case t � 3 and br A( ) � 4 .

Proposition 1. The block cipher (4) is a Markov cipher.

This proposition may be proven directly, by checking (5) for its round functions.

Proposition 2 (easily derived from [15]). For the Markov cipher (4), its security

against differential cryptanalysis is upper estimated with the value �b , where

� � � �
� �

�max ( ( ) ( ), )
, *� �

� � �
F x Fp p

p
s x s x

1
, (6)

“+” is the field addition, b is the number of active S-boxes in all rounds.

Proposition 3 [14]. The number of active S-boxes in 2 sequential rounds with the

round function (2) is not less than br A( ) .

In the case if A is an MDS-matrix of the size t t	 , br A( ) � �1 and, according to

Proposition 3, the number of active S-boxes in 2 sequential rounds with full S-box

layer is not less than t �1. But if there are several rounds, each with only one S-box,

between two rounds with a full S-box layer, we cannot state anything about the

number of active S-boxes in these rounds, except that this number is not less than the

number of rounds. It should be noted that the authors of [5] did not take this detail into

account when constructing security estimates against linear and differential

cryptanalysis, and, as a result, incorrect estimates were obtained.

Proposition 4 (obvious). The number of active S-boxes in all rounds of (4) is not

less than the number of active S-boxes in rounds with a full S-box layer.

Proposition 5 (corollary of Prop. 2 and Prop. 3). The number b of active S-boxes

in (4) is not less than

b t
r

� � �
�

�
�

�

�
�2 1

2
( ) full , (7)

and, if rfull is even, is not less than

b t r� �( )1 full .

Note. The inequality (7) implies that it is more efficient to have an even value

rfull , because one extra round that makes rfull odd does not increase the value in (7).

So, in what follows we will choose rfull to be even.

In this chapter we construct security estimates for HadesMiMC-like permutations

with two types of S-boxes: power functions and inverse S-boxes. Before proving the

main results, we will need the following auxiliary statement about parameters (6).

Proposition 6 [16].

1. Let s x x pu( ) � mod , where ( , )u p� �1 1. Then � �
�( )u

p

1
.

2. Let s x x p x( ) if ;

,
� ��


�

�1 0

0

mod

else.
Then � �

4

p
.

Theorem 1. 1. Let rfull be even, s x x pu( ) � mod , A F Fp
t

p
t:( ) ( )� be an MDS

matrix of the size t t	 . Then the security estimate of the block cipher (4) against

differential cryptanalysis is upper bounded with the value

u

p

t r
��

�
��

�

�
��

�
1

1( ) full

. (8)
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2. Let rfull be even, s x x p( ) � �1mod , A F Fp
t

p
t:( ) ( )� is an MDS matrix of the

size t t	 . Then security estimate of the block cipher (4) against differential

cryptanalysis is upper bounded with the value

4
1

p

t r
�

�
��

�

�
��

�( ) full

.

Proof. It is obvious using Propositions 1–6 and the fact that in this case

r r
rfull full
full

2 2

�

�
�

�

�
� �

�

�
�

�

�
� � . �

Usually a block cipher is considered to be practically secure against differential

cryptanalysis, if its security estimate is not more than 2�N , where N is its block size.

But in our case, as we showed in 2.1, the maximal security level of SPONGE

construction is l p p( ) log� . So the weaker requirement may be formulated as

�b p �2 log .

However, we will use stronger requirement. Moreover, to increase the security

and make it closer to the theoretical one, we require

�b N �2 2 ,

which means

u

p

t r
N��

�
��

�

�
��  

�
�1

2

1
2

( ) full

or
4

2

1
2

p

t r
N�

�
��

�

�
��  

�
�

( ) full

, (9)

using statements 1 and 2 of Theorem 1 for powered and inverse S-boxes,

respectively. Also in [5] the authors proposed to add two extra full rounds, just for

any case. But adding two full rounds (one at the beginning, and one at the end)

makes rfull odd and does not increase security. So if we decide to add some extra

rounds, we should add them in such a way that rfull is even (i.e., when adding

additional rounds we should provide even parity of rfull ).

As we can see from (9), a permutation with power S-boxes with u! 5 requires

more rounds than with inverse ones, for the same level of security. In the next chapter,

we will discuss a type of S-boxes that is preferable from different points of view.

2.2.2. Security estimates of non-binary cipher HadesMiMC against linear
cryptanalysis. According to [9], the parameters that characterize practical security of a

block cipher against linear attacks, essentially depend on the structure of this cipher, and

first of all, on the operation in the key adder. Thus, the practical security estimate (with

respect to the field addition in Fp ) of a cipher E against linear cryptanalysis is the value

max ( , )
, �� �

� �
�

�
F

E b

p

ELP L ,

where b is the number of active S-boxes, and the parameter L depends on the

S-box (see Definition 15 and explanation on the page 25 in [9]):

L L s
p

x s x
F x Fp

p

� �
� �

�( ) max ( ( ), ( ( )))
, �� �

� �
1

2

, (10)

where � and � are additive characters of Fp (characters of the additive group of

this field).
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The value b is the same as for the differential cryptanalysis, i.e. it is the number of

all active S-boxes in the cipher. Using the same consideration as in 2.1, we get

b t r� �( )1 full if rfull is even (we consider only this case).

Proposition 7.

1. Let s x x pu( ) � mod , where ( , )u p� �1 1 . Then L s
u

p
( )

( )
�

�1 2

.

2. Let s x x p x( ) if ;

, .
� ��


�

�1 0

0

mod

else
Then L s

p
( ) �

16
.

Proof.
1. First, let us estimate the value

( ( ) ( ( ))) ( ( ) ( ))� � � �x s x x x

x F x Fp p

�
� �
� � 13 . (11)

Note that the group ( , )Fp � is cyclic (with the generator g �1), so the

corresponding group of characters ( � , )Fp 	 is also cyclic. Let � be the generator of

( � , )Fp 	 . Then any element from this group, particularly characters � and �, can be

represented as

� � �� , � � �� ,

for some appropriate 0 1� � �� �, p .

Then

� � � � � � � � � � �� �( ) ( ) ( ) ( ) ( ) ( ) ( )x x x x x x x x13 13 13 13� � � � � � , (12)

using the fact that � is a homomorphism.

Now we can rewrite (11) using (12) as

( ( ) ( )) ( )� � � � �x x x x

x F x Fp p

13 13

� �
� �� � . (13)

Applying the Weil Theorem ([17], Theorem 5.38) to (13), we obtain

� � � � �
x Fp

x x x x p p

�
� � � � � � �( ) ( ( ) )13 13 1 12deg . (14)

After application of (11)–(14) to (10), we obtain

L L s
p

x s x
F x Fp

p

� � �
� �

�( ) max ( ( ), ( ( )))
, �� �

� �
1

2

� � � � � �
�
�max ( )

,� �
� � �

1 1
12

14413

2
2

p
x x

p
p

px Fp

.

2. First, let us estimate the value

( ( ) ( ( ))) ( ( ) ( ))
*

� � � �x s x x x

x F x Fp p

� �
�

�

�
� � 1 1. (15)

Note that the group ( , )Fp � is cyclic (with the generator g �1), so the

corresponding group of characters ( � , )Fp 	 is also cyclic. Let � be the generator
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of ( � , )Fp 	 . Then any element from this group, particularly characters � and �, can be

represented as

� � �� , � � �� ,

for some appropriate 0 1� � �� �, p .

Then

� � � � � � � � � � �� �( ) ( ) ( ) ( ) ( ) ( ) ( )x x x x x x x x� � � �� � � � � �1 1 1 1 , (16)

using the fact that � is a homomorphism.

Now we can rewrite (15) using (16) as

( ( ) ( )) ( )
* *

� � � � �x x x x

x F x Fp p

�

� �

�� �� �1 1 . (17)

Applying the theorem about the Kloosterman sum ([17], Theorem 1.5) to (17), we

obtain

� � � �
��x F x x F x x

p p

x x x x p

�

�

� �
� �� � � � � � �

*

( ) ( )

, :

1
1 22 2 2

1 2 1 2

4 p. (18)

After application of (15)–(18) to (10), we obtain

L L s
p

x s x
F x Fp

p

� � �
� �

�( ) max ( ( ), ( ( )))
, �� �

� �
1

2

� � �
�

�

�
�
�

�

�

�
�
�

� � � �
�

��max (
, *� �

� � �
1

1
1

4
161

2
2

p
x x

p
p

p
x Fp

. �

Theorem 2. 1. Let rfull be even, s x x pu( ) � mod , A F Fp
t

p
t:( ) ( )� is an MDS

matrix of the size t t	 . Then the security estimate of the block cipher (4) against linear

cryptanalysis is upper bounded with the value

( )
( )

u

p

t r
��

�

�
�

�

�

�
�

�
1 2

1 full

.

2. Let rfull be even, s x x p( ) � �1mod , A F Fp
t

p
t:( ) ( )� is an MDS matrix of the

size t t	 . Then security estimate of the block cipher (4) against linear cryptanalysis is

upper bounded with the value

16
1

p

t r
�

�
��

�

�
��

�( ) full

.

Proof. It is obvious using Propositions 1–5, Proposition 7 and the fact that in this

case
r r

rfull full
full

2 2

�

�
�

�

�
� �

�

�
�

�

�
� � . �

3. CHOICE OF S-BOXES

Choice of S-boxes should take into account the following aspects:

— the mapping s F Fp p: � should be bijective, i.e., for a power S-box the

requirement ( , )p u� �1 1 should be met;
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— for reasons of security against linear and differential cryptanalysis, the

parameters � and L (which depend only on the S-box) should be as small as possible;

— in terms of SNARKs implementation complexity, the number of constraints (which

also depends only on the number and type of S-boxes) should be as small as possible.

Recall that for the inverse S-boxes, the parameters � and L are estimated by upper

bound as � �
4

p
and L

p
�

16
, and for the power ones – as � �

�( )u

p

1
and L

u

p
�

�( )1 2

(Propositions 6 and 7). So for the power S-boxes it makes sense to choose the

parameter u as u N v p� � � �min :( , ){ }� 1 1 .

For the inverse S-boxes the parameters � and L will be smaller than for the power

ones if u � 3. So, in terms of the cryptographic security, the most appropriate are either

inverse or cubic S-boxes, if the latest ones define a bijective mapping. If p�1 is

divided by 3, then inverse S-boxes have no competitors.

In terms of minimizing the number of constraints, inverse and power S-boxes with

a small value of the parameter u are also the most appropriate. Indeed, to describe an

inverse S-box, 3 constraints are needed; to describe a cubic S-box – 2 constraints:

x x x

x x x
1 1 2

1 2 3

�
�

�


�

;

,

to describe an S-box s x x p( ) ,� 5b mod 3 constraints are needed:

x x x

x x x

x x x

1 1 2

2 2 3

1 3 4

�
�
�

�



"

�"

;

;

,

etc., with an increase in the exponent u the number of constraints grows

approximately as 2 log u. So, if p�1 is divided by all relatively “small” prime 3, 5,

7, 11, …, then both the security requirements and the requirements for simplicity

of implementation lead to the choice of inverse S-boxes.

However, on the other hand, implementation of an inverse S-box is costly, since

requires execution of the Euclid’s algorithm, that, in turn, requires the order of

#(log )p divisions with a remainder. Therefore, when choosing an S-box, all factors

must be taken into account and an acceptable compromise must be sought.

In the next section 5, when calculating the algorithm parameters for specific

values of the field characteristics, we will consider two options for choosing of

S-boxes — inverse and power, with the smallest exponent providing bijection.

4. NUMBER OF ROUNDS WITH FULL AND PARTIAL S-BOX LAYERS
AND FULL NUMBER OF CONSTRAINTS

Following [5, 7], we define the number of rounds with a full S-box layer, rfull , as

the minimal number of rounds that guarantee security against differential and linear

cryptanalysis (forward and backward). Then determine the number of rounds with

a partial layer of S-boxes, based on considerations of the security against algebraic

attacks.

As noted, the authors of [5] also recommend adding two rounds just in case.

However, after adding two rounds (one at the beginning, one at the end), the value rfull

will become odd, i.e. adding two rounds will not increase the security against statistical

attacks. If we add two rounds at the beginning and end, it will significantly increase

the number of constraints. We do not see a reasonable need to increase the number of

rounds with a full layer of S-boxes, especially in a situation where the number of

constraints is critical.
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The number of constraints per bit is determined as follows. The number of

constraints required to specify one S-box must be multiplied by the number of all

S-boxes, which is completely determined by the number of rounds of both types and

their structure. Then the resulting value must be divided by the value r that determines

the length of the output on one iteration of the SPONGE construction.

5. NUMERICAL RESULTS FOR MNT-COMPATIBLE PARAMETERS

We calculated the number of rounds with a full layer of S-boxes for a prime field

of characteristic p , where the bit length of the characteristic is equal to 753. As

a prime field, we chose one of the fields for which triplets MNT-4 and MNT-6 are

defined [11]. In rounds with a full layer of S-boxes, we will place 3 S-boxes, in

rounds with a partial layer — one S-box. We define a linear operator as an MDS

matrix of dimension 3 3	 . In this case, the capacity c � � �2 752 1504 and rate

r � 752 if you use a byte representation. Power S-boxes were chosen as

s x x p( ) � 13mod , because of min :( , ){ } = 13� �� � �N p 1 1 . For inverse S-boxes and

power S-boxes of the form s x x p( ) � 13mod the number of rounds with a full layer

of S-boxes is 4 (2 rounds at the beginning, 2 at the end, to eliminate the

possibility of both attacks with the chosen plaintext and attacks with the chosen

ciphertext). The number of rounds with a partial layer of S-boxes, according to

(4.1) and (4.2) in [5], will be about 60. In this case, the number of constraints per

bit is equal to 0.48 for power S-boxes and 0.29 for inverse S-boxes, which is

3.5–5.8 times less than the same indicator for the Pedersen function.

The number of full rounds for the Poseidon we find from the inequality

144
2 2

4
2 6

p

r
N p�

�
��

�

�
�� � �� �

full

,

whence we obtain

rfull �
�

�

�

��
�

��
�

6 753

4 745
2,

i.e., we have two rounds with a full layer of S-boxes at the beginning and at the

end of the algorithm.

The same number of rounds is enough to guarantee security against linear

cryptanalysis.

Note than in case of adding 2 extra rounds (one to the beginning, one to the end)

and 2 rounds to make rfull even, we obtain

rfull � 4 ,

so the whole number of full rounds is 8.

CONCLUSIONS

The paper contains the following results.

1. Security estimates were considered against non-binary linear and differential

attacks. Let us note that construction of such estimates uses serious algebraic

techniques, in particular, some properties of sums of characters for an additive group

of the finite field, and properties of sums of such characters.

2. We adduce the general parameters for the Poseidon hash function that allows

using this hash function in recurrent SNARK-proofs based on MNT-4 and MNT-6

triplets.

3. We analyzed how to choose S-boxes for such function, for this choice to be

optimal from the point of view of the number of constraints and of security.
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4. We showed how many full rounds would be sufficient to guarantee security of

such hash function against non-binary linear and differential attacks.

5. We calculated the number of constraints per bit that is achieved in the proposed

realization; a considerable gain was demonstrated, as compared to the Pedersen hash

function.

We provided strict formal proofs for all listed results.

Following [5] and [7], we chose the round functions for random permutations and

their parameters in the following way:

— the number of rounds with a full S-box layer is chosen as the minimal number

that guarantees security against generalized differential and linear attacks;

— the number of rounds with a partial S-box layer is chosen as the minimal

number that guarantees security against other attacks, called “algebraic” in [5, 7];

— S-BOXes are chosen as power functions in the field that set bijection in this field.

Considering specific features of the hash function application and the need for its

compatibility with MNT-4 or MNT-6 triplets [10], we chose the following parameters

of the round functions:

— a prime field Fp where p is a prime number that is used in MNT-4, of the

length of 753 bits;

— exponent of the function describing the S-BOX was chosen so as from one

side, to guarantee the required level of security against attacks, and from the other side,

to minimize the number of constraints;

— one round with a full S-box layer contains three S-BOXes, and a round with a

partial S-box layer contains one S-BOX.

Such selection of parameters in the case of the prime field with the characteristic

bitlength of about 750 bits (MNT-fields, [11]) allows obtaining of the following

characteristics of the hash function at the set security level of 	 �128 bits:

— 4 rounds with a full S-box layer (two rounds at the beginning and two at the end);

— about 60 rounds with a partial S-box layer;

— from 0.28 to 0.48 constraints per bit.

The results obtained show that the Poseidon hash function is secure against

non-binary linear and differential attacks. Given the security level, we can choose

parameters of this hash that guarantee its cryptographical security. An indisputable

advantage of the hash function with such structure is its efficiency in utilization for

SNARK-proofs. For completeness of our investigations it should be noted that very

similar results concerning of differential and linear attacks on block ciphers with

non-binary operations were obtained in [18-20]. But algorithms and transformations,

considered in these works, were not SNARK-oriented, like HadesMiMC and Poseidon.
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Ë.Â. Êîâàëü÷óê, Ð.Â. Îë³éíèêîâ, Ì.Þ. Ðîä³íêî

ÑÒ²ÉÊ²ÑÒÜ ÃÅØ-ÔÓÍÊÖ²¯ POSEIDON ÄÎ ÍÅÁ²ÍÀÐÍÈÕ Ð²ÇÍÈÖÅÂÈÕ
ÒÀ Ë²Í²ÉÍÈÕ ÀÒÀÊ

Àíîòàö³ÿ. Ïîáóäîâàíî îö³íêè ñò³éêîñò³ ãåø-ôóíêö³¿ Poseidon äî íåá³íàðíèõ
ë³í³éíèõ òà ð³çíèöåâèõ àòàê. Âèçíà÷åíî çàãàëüí³ ïàðàìåòðè äëÿ ãåø-ôóíêö³¿
Poseidon, ÿê³ çàáåçïå÷óþòü ìîæëèâ³ñòü ¿¿ âèêîðèñòàííÿ ó ðåêóðåíòíèõ
SNARK-äîâåäåííÿõ, ùî ´ðóíòóþòüñÿ íà òðèïëåòàõ MNT-4 òà MNT-6. Ïðî-
àíàë³çîâàíî, ÿê ïîòð³áíî îáèðàòè S-áëîêè äëÿ ö³º¿ ãåø-ôóíêö³¿, ùîá öåé
âèá³ð áóâ îïòèìàëüíèì ç ïîãëÿäó ÿê ñò³éêîñò³, òàê ³ ê³ëüêîñò³ êîíñòðåéíò³â.
Ïîêàçàíî, ÿêà ê³ëüê³ñòü ðàóíä³â º äîñòàòíüîþ, ùîá ãàðàíòóâàòè ñò³éê³ñòü òà-
êî¿ ãåø-ôóíêö³¿ äî íåá³íàðíèõ ë³í³éíèõ òà ð³çíèöåâèõ àòàê, îá÷èñëåíî
ê³ëüê³ñòü êîíñòðåéíò³â íà á³ò ³íôîðìàö³¿ äëÿ çàïðîïîíîâàíèõ ðåàë³çàö³é ö³º¿
ôóíêö³¿ ç äåìîíñòðàö³ºþ ñóòòºâîãî âèãðàøó ïîð³âíÿíî ç ãåø-ôóíêö³ºþ Ïå-
äåðñåíà.

Êëþ÷îâ³ ñëîâà: SNARK, êîíñòðåéíòè, ãåø-ôóíêö³ÿ Poseidon, íåá³íàðíèé
ë³í³éíèé òà ð³çíèöåâèé êðèïòîàíàë³ç.

Ë.Â. Êîâàëü÷óê, Ð.Â. Îëåéíèêîâ, Ì.Þ. Ðîäèíêî

ÑÒÎÉÊÎÑÒÜ ÕÅØ-ÔÓÍÊÖÈÈ POSEIDON Ê ÍÅÁÈÍÀÐÍÛÌ ÐÀÇÍÎÑÒÍÛÌ
È ËÈÍÅÉÍÛÌ ÀÒÀÊÀÌ

Àííîòàöèÿ. Ïîñòðîåíû îöåíêè ñòîéêîñòè õåø-ôóíêöèè Poseidon ê íåáèíàð-
íûì ëèíåéíûì è ðàçíîñòíûì àòàêàì. Îïðåäåëåíû îáùèå ïàðàìåòðû
õåø-ôóíêöèè Poseidon, ïîçâîëÿþùèå èñïîëüçîâàòü å¸ â ðåêóððåíòíûõ
SNARK-äîêàçàòåëüñòâàõ, áàçèðóþùèõñÿ íà òðèïëåòàõ MNT-4 è MNT-6. Âû-
ïîëíåí àíàëèç òîãî, êàê íóæíî âûáèðàòü S-áëîêè äëÿ ýòîé õåø-ôóíêöèè,
÷òîáû ýòîò âûáîð áûë îïòèìàëüíûì ñ òî÷êè çðåíèÿ êàê ñòîéêîñòè, òàê è
êîëè÷åñòâà êîíñòðåéíòîâ. Ïîêàçàíî, êàêîå êîëè÷åñòâî ðàóíäîâ ÿâëÿåòñÿ äîñ-
òàòî÷íûì, ÷òîáû ãàðàíòèðîâàòü ñòîéêîñòü ýòîé õåø-ôóíêöèè ê íåáèíàðíûì
ëèíåéíûì è ðàçíîñòíûì àòàêàì, âû÷èñëåíî êîëè÷åñòâî êîíñòðåéíòîâ íà áèò
èíôîðìàöèè äëÿ ïðåäëîæåííûõ ðåàëèçàöèé ýòîé ôóíêöèè ñ äåìîíñòðàöèåé
ñóùåñòâåííîãî âûèãðûøà â ñðàâíåíèè ñ õåø-ôóíêöèåé Ïåäåðñåíà.

Êëþ÷åâûå ñëîâà: SNARK, êîíñòðåéíòû, õåø-ôóíêöèÿ Poseidon, íåáèíàð-
íûé ëèíåéíûé è ðàçíîñòíûé êðèïòîàíàëèç.
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