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SECURITY OF POSEIDON HASH FUNCTION AGAINST NON-BINARY
DIFFERENTIAL AND LINEAR ATTACKS!

Abstract. In this work we build the security estimations of Poseidon hash
function against non-binary linear and differential attacks. We adduce the
general parameters for the Poseidon hash function that allow using this hash
function in recurrent SNARK-proofs based on MNT-4 and MNT-6 triplets.
We also analysed how to choose S-boxes for such function for this choice to be
optimal from the point of view of the number of constraints and security. We
also showed how many full rounds is sufficient to guarantee security of such
hash function against non-binary linear and differential attacks and calculated the
number of constraints per bit that is achieved in the proposed realizations
demonstrating a considerable gain was demonstrated, as compared to the
Pedersen hash function.

Keywords: SNARK, constraints, Poseidon hash function, non-binary linear and
differential cryptanalysis.

INTRODUCTION

One of the most important problems arising in construction of SNARK-proofs and
STARK-proofs [1-3] is reduction of the number of constraints describing
algorithms in the respective SNARK-system. The construction of such proofs
begins with the fact that a certain transformation (for example, a hash function)
should be described as a system of certain equations of many variables over a
finite field, the left part of which contains a polynomial of many second degree
variables, and the right part — a polynomial of many variables of the first degree.
These equations are called constraints, and their complexity determines the
complexity of constructing the appropriate SNARK-proof. Most often
SNARK-proofs are used to prove knowledge of the pre-image of some hash
function. Therefore, the hash functions used in such blockchains should be
designed so that they can be described by as few constraints as possible.

One of the first hash functions convenient for constructing SNARK-proofs was
the Pedersen hash function [4, page 134]. It is based on operations in a group of points
of an elliptic curve, which, in turn, can be reduced to operations in the corresponding
finite field. Since constraints are polynomials just over such a field, the number of
constraints required to specify such a hash function is ten times less than for
“classical” hash functions that operate with byte and bit operations (about 1.68
constraints per 1 bit of input). This number of constraints is quite acceptable, but the
question of reducing it still remains relevant. The Poseidon hash function proposed
in [5] appeared to be quite a good construction with respect to the number of
constraints. For this function, the number of constraints is up to 15 times smaller than
for the Pedersen hash function. Utilization of this function in SNARK-systems requires
provision of a full substantiation of its security against the main applicable
cryptographic attacks. The Poseidon hash function is based upon the SPONGE
construction [6] that uses the HADES block cipher algorithm [7] as the inner
permutation. For this reason, the main part of the security substantiation for the
Poseidon hash function is to show that the HADES algorithm is indistinguishable from
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a random permutation [5, 6]. The authors of the HADES algorithm, and later the
authors of the Poseidon hash function adduced very detailed substantiations for
security of these constructions against some class of attacks they called “algebraic
attacks”. However, for these algorithms, substantiation of security against linear and
differential cryptoanalysis attacks was to a large extent empirical, and requires further
analysis to achieve a strict formal substantiation. E.g. in substantiation of the algorithm
security against linear attacks, the authors considered coordinate functions of S-boxes
demonstrating that in fact they analyzed its security against classical linear attacks.
However, as shown in [8, 9], for non-binary ciphers it is necessary to analyze security
specifically against non-binary linear cryptoanalysis, as both the key adder and the
linear layer use operations in the prime field instead of binary operations. The similar
situation takes place with respect to the differential cryptanalysis.

The purpose of this paper is to obtain security estimates of Poseidon hash function
against non-binary linear and differential attacks, show how many full rounds would
be sufficient to guarantee security of such hash function against these attacks, adduce
the general parameters for the Poseidon hash function that allows using this hash
function in recurrent SNARK-proofs.

1. MATHEMATICAL MODEL OF POSEIDON.
The Poseidon hash function [5] uses SPONGE construction [6] with a permutation
named HadesMiMC [7] inside it (see Fig. 1).

Three parameters describe this construction: capacity ¢, rate », and permutation
length N, where N =c+r. From some practical consideration, we are interested in
case when N =3[log p], c¢=2[log p], r=[log p], where prime p is of the special
form, which provides compatibility with triplets MNT-4 or MNT-6 in CODA (now —
MINA) [10. 11]. Any permutation or block cipher may be used inside SPONGE. The
authors of [7] suggested to use HadesMiMC as the permutation that needs the least
number of constraints per bit, when used in SNARK-systems. HadesMiMC may be
considered as a block cipher whose round functions are different in different rounds.
The main idea of HadesMiMC is to use rounds with full number of S-boxes and rounds
with partial number of S-boxes (for example, only 1 S-box). The general scheme of
Hades is given in the Fig. 2 (this Figure is taken from [7] with all its designations,
which are wide used for block ciphers). Such construction allows reducing the number
of constraints, while preserving security level against different (statistical and
algebraic) attacks.
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Fig. 1. SPONGE construction
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Now we describe the mathematical
model of the permutation HadesMiMC | 1 'ARK['] : ' |
on which Poseidon is based. :
[ 5] stat
Let p be a large prime, / is its bit I¢¢I E;I I:'}]MI[:? E%] Efl:ll Rf
length, [~ log p. TV VOV OV ¥
Define a bijection s: /), = F, as T W - 1 R
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s(x) = -1)=1.
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For some teN define values | MO |
x,Ce(F,) as x=(x,...x), vy v v v v
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C=7(Ct,...,6’1), where X;,Ci EFp, | ARK (-) |
i=1¢ For xe(Fp)t define two ‘ | | | | | R
. | M () [ |7
mappings: Sfun:(Fp)t —>(Fp)’ and TV v ¥ vV 3 7
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spar (Fp) _>(Fp) as [ ARK (-] l \
N eI
N (x):(s(xt),...,s(xl)), (1) | M (-} |
[ 2R v
SPI @) = (pens X, 5(37)) - MM \
. . | ARK (-} |
Finally, define an MDS-matrix R,
stat
A:(F,) > (F,) of the size txt. rql i EQME%,] E *| %
: R T TR R A /
Define the round functions for
the permutation HadesMiMC. They

are of two types: the round function
with a full S-box layer that is defined

as Cfu“:(Fp)t —)(Fp)’, where for arbitrary C e(Fp)’:

Fig. 2. HadesMiMC

FM )y =aes™M(x*0), 2)

and the round function with a partial S-box layer that is defined as
fcpart:(Fp)t —>(Fp)t , where for arbitrary C e(Fp)t:

SR ()= Ao ST (x*C), (3)

where x*C = (x; +¢;,...,x; +¢;) and “+” is field addition (addition modulo p) and
ghull " gpart ere defined in (1).
Definition 1. A HadesMiMC-like permutation with parameters p, ¢, u, rgy, and

. . . > L Uy Ty > 1y
Tpart 18 the family of permutations H, ép fll  part )

the set of round constants C = (Cy,..., Cy,.

(F, Y > (F » )! parameterized by
[ ),C; € (Fp)t that are defined as

rpar

S U Ty 5 7
Hép Us T ’part)(x) —

full full o f part

orof

c o.“ofpart Ofﬁlll Offull (x) (4)

C c C,

C2rfu11 +/part rfull +7part + 1 Cz"full +/part rfull +1 rfull

If parameters p, ¢, u, rgy, and 7, are set, we will write H ¢, for simplicity.
Note. The transformation (4) means that, for fixed set of constraints

C=(Cy,..., C2rfu“+,paﬂ ), we first apply functions fcﬁlﬂl,...,fcfull , 1e., functions of the
full
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type (2) with a full S-box layer and with corresponding “round keys” Cy,...,C,._, and
they are the first 7y rounds of the transformation. Then we apply functions of the
type (3) with a partial S-box layer during 7, round and with corresponding “round
keys;” and then again apply rg; rounds with functions of the type (2).

2. CRYPTOGRAPHICAL SECURITY OF POSEIDON

2.1. Security in the random Oracle model. Security of SPONGE construction
depends mostly on the security of its internal permutation, HadesMiMC in our
case. So we will pay a lot of attention to security of HadesMiMC. It was proven
in [12] that if an internal permutation is modeled as a randomly chosen
permutation, then the SPONGE function is indistinguishable from the random
oracle up to 2¢? calls to it.

For some practical aspects, it is convenient to set ¢=2/(p), so the maximal
security level of the SPONGE construction is /(p) . It means that we should prove that
the security level of the internal permutation is also not less than /( p) . But we will use
stronger requirement to find the number of rounds of the permutation.

In what follows, under security estimations against differential and linear
cryptanalysis of block cipher we will understand the maximum of average (on keys)
probabilities of its differential and linear characteristics, respectively.

2.2. Security against linear and differential attacks. In this chapter we
construct, rigorously proved, security estimates for HadesMiMC against these two
types of statistical attacks. Note that to construct estimates against differential attacks,
we mostly use known results or their generalizations. But to construct the similar
estimates against linear attacks, we had to prove a few non-trivial statements on sums
of characters of the additive group of the finite field.

2.2.1. Security estimates of non-binary cipher HadesMiMC against
differential cryptanalysis. To construct security estimations against differential
cryptanalysis, we consider HadesMiMC as a block cipher. Further we use the
following results.

Definition 2 [13]. The block cipher £ with the round function

fTMxK— M

(where M is an Abelian group w.r.t. some operation “*,” 0 is its neutral element)
is called a Markov cipher w.rt. “*” if Vx, a, f e M:

b L

SOk, x*a)* fk,x) " By =— D 0(f (k,a)* f(k,0)"", B),  (5)

|K| keK ‘K| kekK

1 if x=y,

where 0 is the Kronecker symbol: d(x, y)={0 clse

Note. This definition can be easily generalized for the case when the round
functions are different.

Definition 3 [14]. The branch number of the matrix 4:(F, Yo (F » )" of the size

txt is
br(4)= min {wt(Ax) +wt(x)},
x&(F,)\(0...., 0)

where wt is the Hamming weight.
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Note that if 4 is an MDS-matrix, then its branch number is maximal possible (for
its size) and is equal to br(A4) =t +1. For example, in our case =3 and br(4) =4.

Proposition 1. The block cipher (4) is a Markov cipher.

This proposition may be proven directly, by checking (5) for its round functions.

Proposition 2 (easily derived from [15]). For the Markov cipher (4), its security

against differential cryptanalysis is upper estimated with the value Ab, where

A= nmx*l—z)de+a)—ﬂxLﬁ), (6)

(l,ﬂEFp pxer

“+” is the field addition, b is the number of active S-boxes in all rounds.

Proposition 3 [14]. The number of active S-boxes in 2 sequential rounds with the
round function (2) is not less than br(A4).

In the case if 4 is an MDS-matrix of the size ¢ x ¢, br(A) =+1 and, according to
Proposition 3, the number of active S-boxes in 2 sequential rounds with full S-box
layer is not less than ¢ +1. But if there are several rounds, each with only one S-box,
between two rounds with a full S-box layer, we cannot state anything about the
number of active S-boxes in these rounds, except that this number is not less than the
number of rounds. It should be noted that the authors of [5] did not take this detail into
account when constructing security estimates against linear and differential
cryptanalysis, and, as a result, incorrect estimates were obtained.

Proposition 4 (obvious). The number of active S-boxes in all rounds of (4) is not
less than the number of active S-boxes in rounds with a full S-box layer.

Proposition 5 (corollary of Prop. 2 and Prop. 3). The number b of active S-boxes
in (4) is not less than

bzzg+n{ﬁ?}, (7

and, if 7y is even, is not less than
b> (t"‘l)”full .

Note. The inequality (7) implies that it is more efficient to have an even value
1> because one extra round that makes gy odd does not increase the value in (7).
So, in what follows we will choose 7y, to be even.

In this chapter we construct security estimates for HadesMiMC-like permutations
with two types of S-boxes: power functions and inverse S-boxes. Before proving the
main results, we will need the following auxiliary statement about parameters (6).

Proposition 6 [16].

(u=1)
P

1. Let s(x)=x"mod p, where (u, p—1)=1. Then A <

-1 . )
2. Let s(x)=4* modpif x#0; Tpen A < i
0, else. p

Theorem 1. 1. Let 7 be even, s(x) =x"“mod p, A:(Fp)t - (Fp)t be an MDS

matrix of the size ¢#x¢. Then the security estimate of the block cipher (4) against
differential cryptanalysis is upper bounded with the value

w1 (t+ Dy
() ®
p
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2. Let rgy be even, s(x) = x 'mod p,A:(F), )y > (Fp )" is an MDS matrix of the

size txt. Then security estimate of the block cipher (4) against differential
cryptanalysis is upper bounded with the value

(4J(f+1)”ﬁ111
p

Proof. It is obvious using Propositions 1-6 and the fact that in this case

Ml | | Rl
4| = |=gy- O

Usually a block cipher is considered to be practically secure against differential

cryptanalysis, if its security estimate is not more than 27N where N is its block size.
But in our case, as we showed in 2.1, the maximal security level of SPONGE
construction is /(p) = log p. So the weaker requirement may be formulated as

Ab <o~ logp,

However, we will use stronger requirement. Moreover, to increase the security
and make it closer to the theoretical one, we require

Ab < 2_2N,

w1 (t+ D 4 (t+ Dy
(] <272V or (J <272V, 9)

which means

p p

using statements 1 and 2 of Theorem 1 for powered and inverse S-boxes,
respectively. Also in [5] the authors proposed to add two extra full rounds, just for
any case. But adding two full rounds (one at the beginning, and one at the end)
makes gy odd and does not increase security. So if we decide to add some extra
rounds, we should add them in such a way that 7y is even (i.e., when adding
additional rounds we should provide even parity of 7).

As we can see from (9), a permutation with power S-boxes with u>5 requires
more rounds than with inverse ones, for the same level of security. In the next chapter,
we will discuss a type of S-boxes that is preferable from different points of view.

2.2.2. Security estimates of non-binary cipher HadesMiMC against linear
cryptanalysis. According to [9], the parameters that characterize practical security of a
block cipher against linear attacks, essentially depend on the structure of this cipher, and
first of all, on the operation in the key adder. Thus, the practical security estimate (with
respect to the field addition in /) of a cipher E against linear cryptanalysis is the value

max_ ELP" (y,p)="L",
x> PEF,

where b is the number of active S-boxes, and the parameter L depends on the
S-box (see Definition 15 and explanation on the page 25 in [9]):
2

L=Ls)= max |~ 3 G@). ps))| - (10)

x> Pk, pxer

where x and p are additive characters of F, (characters of the additive group of
this field).
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The value b is the same as for the differential cryptanalysis, i.e. it is the number of
all active S-boxes in the cipher. Using the same consideration as in 2.1, we get
b= (t+Dry if ryy is even (we consider only this case).

Proposition 7.

12
I. Let s(x)=x“mod p, where (i, p—1)=1. Then L(s)< “~D"
p

-1 . .
2. Let s(x)=4% modpif x#0; pep 7(5) < 16
0, else. p
Proof.
1. First, let us estimate the value
> @@ =Y @x)pE")) . (11)
xer xer

Note that the group (F,.+) is cyclic (with the generator g=1), so the
corresponding group of characters (£, x) is also cyclic. Let ¢ be the generator of

(ﬁ ,%). Then any element from this group, particularly characters ¥ and p, can be
represented as
1=v" p=y”,
for some appropriate 0 < a, § < p—1.
Then
2P =9 =y B =pax+pe?), (12

using the fact that ¥ is a homomorphism.
Now we can rewrite (11) using (12) as

S ap) = Y wlax+px"). (13)

xer xer

Applying the Weil Theorem ([17], Theorem 5.38) to (13), we obtain

> lax+Bx"?) < (deg(ax + px'3)~1)-[p =12/p. (14)

xeF, »

After application of (11)—(14) to (10), we obtain
2

L=L()= max |~ Y @), psr))| =

X PElp pxer

2

2
— max |~ zw(aﬁﬁxm) < l.lz.\/; _la4
@, xer p p
2. First, let us estimate the value
2 E@pE) = X Ex)pG))+1. (15)
xer xeF;

Note that the group (F,,+) is cyclic (with the generator g=1), so the
corresponding group of characters (£, x) is also cyclic. Let 1 be the generator
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of (ﬁ ,%). Then any element from this group, particularly characters ¥ and p, can be
represented as

X "/j > p 1/) >
for some appropriate 0 < a, § < p—1.
Then

7@p H=p@% P HP =) pBxH=pax+px), (16

using the fact that ¢ is a homomorphism.
Now we can rewrite (15) using (16) as

2 qp( N = Ywplax+prh). (17)

'
xer xer

Applying the theorem about the Kloosterman sum ([17], Theorem 1.5) to (17), we
obtain

Splax+px =2 S (xqt+x) <22/ p=4p. (18)

*
xeF, xp, X6l xpp=aff

After application of (15)—(18) to (10), we obtain

2
1 N
L=L(s)= max_|— > (x(x), p(s(x))| =
X PEL pxer
2
! ! > 16
=max|— le(ax+/3x_1+l ~ —-4-\/; =— .01
a.plp <l P P

Theorem 2. 1. Let rg,; be even, s(x) =x"mod p, A:(Fp)t - (Fp)t is an MDS

matrix of the size #x ¢ . Then the security estimate of the block cipher (4) against linear
cryptanalysis is upper bounded with the value

( 1)2 (t+ Dy
°—
( p J .

2. Let rgp be even, s(x) = x 'mod p, A:(F, )y - (F, )! is an MDS matrix of the

size tx t . Then security estimate of the block cipher (4) against linear cryptanalysis is
upper bounded with the value
(16 ](Hl)rﬁm
P

Proof. It is obvious using Propositions 1-5, Proposition 7 and the fact that in this

Tfull Tfull
case +| =y, O

3. CHOICE OF S-BOXES

Choice of S-boxes should take into account the following aspects:
— the mapping s:F", — F, should be bijective, i.e., for a power S-box the
requirement (p—1, u) =1 should be met;
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— for reasons of security against linear and differential cryptanalysis, the
parameters A and L (which depend only on the S-box) should be as small as possible;

— in terms of SNARKSs implementation complexity, the number of constraints (which
also depends only on the number and type of S-boxes) should be as small as possible.

Recall that for the inverse S-boxes, the parameters A and L are estimated by upper

_ 12
bound asASiandLSE,and for the power ones—asAS(uil)andLSM
P P P Z

(Propositions 6 and 7). So for the power S-boxes it makes sense to choose the
parameter u as u=min{v € N:(v, p—1) =1}

For the inverse S-boxes the parameters A and L will be smaller than for the power
ones if u # 3. So, in terms of the cryptographic security, the most appropriate are either
inverse or cubic S-boxes, if the latest ones define a bijective mapping. If p—1 is
divided by 3, then inverse S-boxes have no competitors.

In terms of minimizing the number of constraints, inverse and power S-boxes with
a small value of the parameter u are also the most appropriate. Indeed, to describe an
inverse S-box, 3 constraints are needed; to describe a cubic S-box — 2 constraints:

X1X1 = X35
X1Xp = X3,

to describe an S-box s(x) =x>bmod p, 3 constraints are needed:

X1X1 = X35
XXy =X3;
X1X3 =X4g,

etc., with an increase in the exponent u the number of constraints grows
approximately as 2log u. So, if p—1is divided by all relatively “small” prime 3, 5,
7, 11, ..., then both the security requirements and the requirements for simplicity
of implementation lead to the choice of inverse S-boxes.

However, on the other hand, implementation of an inverse S-box is costly, since
requires execution of the Euclid’s algorithm, that, in turn, requires the order of
O(log p) divisions with a remainder. Therefore, when choosing an S-box, all factors
must be taken into account and an acceptable compromise must be sought.

In the next section 5, when calculating the algorithm parameters for specific
values of the field characteristics, we will consider two options for choosing of
S-boxes — inverse and power, with the smallest exponent providing bijection.

4. NUMBER OF ROUNDS WITH FULL AND PARTIAL S-BOX LAYERS

AND FULL NUMBER OF CONSTRAINTS

Following [5, 7], we define the number of rounds with a full S-box layer, ryy;, as
the minimal number of rounds that guarantee security against differential and linear
cryptanalysis (forward and backward). Then determine the number of rounds with
a partial layer of S-boxes, based on considerations of the security against algebraic
attacks.

As noted, the authors of [5] also recommend adding two rounds just in case.
However, after adding two rounds (one at the beginning, one at the end), the value r;
will become odd, i.e. adding two rounds will not increase the security against statistical
attacks. If we add two rounds at the beginning and end, it will significantly increase
the number of constraints. We do not see a reasonable need to increase the number of
rounds with a full layer of S-boxes, especially in a situation where the number of
constraints is critical.
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The number of constraints per bit is determined as follows. The number of
constraints required to specify one S-box must be multiplied by the number of all
S-boxes, which is completely determined by the number of rounds of both types and
their structure. Then the resulting value must be divided by the value r that determines
the length of the output on one iteration of the SPONGE construction.

5. NUMERICAL RESULTS FOR MNT-COMPATIBLE PARAMETERS

We calculated the number of rounds with a full layer of S-boxes for a prime field
of characteristicp, where the bit length of the characteristic is equal to 753. As
a prime field, we chose one of the fields for which triplets MNT-4 and MNT-6 are
defined [11]. In rounds with a full layer of S-boxes, we will place 3 S-boxes, in
rounds with a partial layer — one S-box. We define a linear operator as an MDS
matrix of dimension 3x3. In this case, the capacity ¢=2-752=1504 and rate
r=752 if you use a byte representation. Power S-boxes were chosen as

s(x) =x"mod p, because of min{v € N:(v, p—1) =1} =13. For inverse S-boxes and

power S-boxes of the form s(x) =x"3mod p the number of rounds with a full layer
of S-boxes is 4 (2 rounds at the beginning, 2 at the end, to eliminate the
possibility of both attacks with the chosen plaintext and attacks with the chosen
ciphertext). The number of rounds with a partial layer of S-boxes, according to
(4.1) and (4.2) in [5], will be about 60. In this case, the number of constraints per
bit is equal to 0.48 for power S-boxes and 0.29 for inverse S-boxes, which is
3.5-5.8 times less than the same indicator for the Pedersen function.
The number of full rounds for the Poseidon we find from the inequality

41
(“M) <272N —p76p,
p

]

whence we obtain
14 =
full L -745

6~753J

i.e., we have two rounds with a full layer of S-boxes at the beginning and at the
end of the algorithm.
The same number of rounds is enough to guarantee security against linear
cryptanalysis.
Note than in case of adding 2 extra rounds (one to the beginning, one to the end)
and 2 rounds to make rgy; even, we obtain
Tl =4

so the whole number of full rounds is 8.

CONCLUSIONS

The paper contains the following results.

1. Security estimates were considered against non-binary linear and differential
attacks. Let us note that construction of such estimates uses serious algebraic
techniques, in particular, some properties of sums of characters for an additive group
of the finite field, and properties of sums of such characters.

2. We adduce the general parameters for the Poseidon hash function that allows
using this hash function in recurrent SNARK-proofs based on MNT-4 and MNT-6
triplets.

3. We analyzed how to choose S-boxes for such function, for this choice to be
optimal from the point of view of the number of constraints and of security.
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4. We showed how many full rounds would be sufficient to guarantee security of
such hash function against non-binary linear and differential attacks.

5. We calculated the number of constraints per bit that is achieved in the proposed
realization; a considerable gain was demonstrated, as compared to the Pedersen hash
function.

We provided strict formal proofs for all listed results.

Following [5] and [7], we chose the round functions for random permutations and
their parameters in the following way:

— the number of rounds with a full S-box layer is chosen as the minimal number
that guarantees security against generalized differential and linear attacks;

— the number of rounds with a partial S-box layer is chosen as the minimal
number that guarantees security against other attacks, called “algebraic” in [5, 7];

— S-BOXes are chosen as power functions in the field that set bijection in this field.

Considering specific features of the hash function application and the need for its
compatibility with MNT-4 or MNT-6 triplets [10], we chose the following parameters
of the round functions:

— a prime field /', where p is a prime number that is used in MNT-4, of the
length of 753 bits;

— exponent of the function describing the S-BOX was chosen so as from one
side, to guarantee the required level of security against attacks, and from the other side,
to minimize the number of constraints;

— one round with a full S-box layer contains three S-BOXes, and a round with a
partial S-box layer contains one S-BOX.

Such selection of parameters in the case of the prime field with the characteristic
bitlength of about 750 bits (MNT-fields, [11]) allows obtaining of the following
characteristics of the hash function at the set security level of A =128 bits:

— 4 rounds with a full S-box layer (two rounds at the beginning and two at the end);

— about 60 rounds with a partial S-box layer;

— from 0.28 to 0.48 constraints per bit.

The results obtained show that the Poseidon hash function is secure against
non-binary linear and differential attacks. Given the security level, we can choose
parameters of this hash that guarantee its cryptographical security. An indisputable
advantage of the hash function with such structure is its efficiency in utilization for
SNARK-proofs. For completeness of our investigations it should be noted that very
similar results concerning of differential and linear attacks on block ciphers with
non-binary operations were obtained in [18-20]. But algorithms and transformations,
considered in these works, were not SNARK -oriented, like HadesMiMC and Poseidon.
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JI.B. KoBanbuyk, P.B. Ouiiinukos, M.1O. Poainko

CTIFIKICII) TEII-®GYHKIIT POSEIDON JI0 HEBIHAPHUX PISHUIIEBUX
TA JIIHIMHUX ATAK

Amnoramnisi. [ToOynoBano owiHku criiikocti rem-¢yHkuii Poseidon 1o HeGiHapHHX
JMHIMHUX Ta pi3HULEBUX aTak. Bu3HaueHO 3aranbHi mapameTpu JUid rem-QyHKIil
Poseidon, siki 3abe3nedyroTh MOMJIMBICTH I BHKOPUCTAHHS y PEKYPEHTHHUX
SNARK-noBenenssax, mo IpyHTyoTbes Ha Tpumierax MNT-4 ta MNT-6. IIpo-
aHaJi30BaHO, AK MOTPiOHO oOmpatu S-Omoku ans miei rem-QyHKmii, moo6 mei
BUOIp OYB ONTHMAJIBHUM 3 HOTJBIAY SK CTIMKOCTI, TaKk 1 KUIBKOCTI KOHCTPEHHTIB.
[Moka3zaHo, sika KUIBKICTh payHIiB € JOCTAaTHBOIO, 100 rapaHTyBaTH CTIHKICTh Ta-
Kol rem-(yHKIii 10 HEOIHAPHMX JTIHIKHUX Ta PISHUIEBAX AaTaK, OOYHCIICHO
KIJIBKICTh KOHCTPEHHTIB Ha OiT iH(MopMawii Ui 3anponoHOBaHUX peatizauiil miei
(hyHKLIT 3 IEMOHCTpALI€I0 CyTTEBOTO BHUIpAIly MOPIBHAHO 3 reu-¢yHkuiero Ile-
JiepceHa.

KuouoBi cioBa: SNARK, koHcrpeitnTh, rem-¢yskuis Poseidon, HeGinapHumit
JMHIMHUK Ta PI3HUIIEBUN KPHIITOAHATI3.

JI.B. KoBanbuyk, P.B. OueiinukoB, M.IO. Poaunko

CTOMKOCTH XEII-®GYHKIAA POSEIDON K HEBMHAPHBIM PA3HOCTHBIM
U JIMHEWMHBIM ATAKAM

AnHoTanus. [loctpoeHs! onieHKH cTOiKocTH Xem-pyHKmKu Poseidon k HeOuHap-
HBIM JIMHEHHBIM ¥ pa3HOCTHBIM arakaM. OmpeznerneHsl oO0NMe HapaMeTphl
xem-pyukuun  Poseidon, mo3BossiOLME HCHONB30BaTh €€ B PEKYPPEHTHBIX
SNARK-noka3zarenbcTBax, 6asupyromuxcs Ha Tpumietax MNT-4 u MNT-6. Bri-
MOJIHEH aHalM3 TOro, KaK HYXXHO BBIOMpaTh S-ONOKM Uil ATOH Xem-(hyHKIHH,
4TOOBI ATOT BBHIOOP OBLI ONTHMAJBHBIM C TOYKM 3PEHUS KaK CTOMKOCTH, TaK M
KOJIMYEeCTBAa KOHCTPEHHTOB. [IoKka3aHO, Kakoe KOJIMYECTBO PAyHJIOB SIBISCTCS J0C-
TaTOYHBIM, YTOOBI TapaHTHUPOBATh CTOMKOCTh ITOH Xeul-(pYHKINH K HEOMHAPHBIM
JIMHEIHBIM U PAa3HOCTHBIM aTakaM, BBIYMCICHO KOJIMYECTBO KOHCTPEHHTOB Ha OHMT
nH(OpMaIMU Ul NIPETIOKEHHBIX pealii3alidl dToH (YHKIUH C JIEeMOHCTparueit
CYLIECTBEHHOIO BBIMIDbILIA B CpaBHEeHHH ¢ Xem-¢pyHkuuei Ilenepcena.

KnroueBbie ciaoBa: SNARK, koncrpeiintsl, xem-¢yHkuust Poseidon, neOunap-
HbIIl JIMHEWHBIH U Pa3HOCTHBIH KPHUIITOAHAIIMS3.

Kovalchuk Lyudmila,
Dr. Habil, professor, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”,
Kyiv; Research Fellow, IOHK, Hong Kong, e-mail: lusi.kovalchuk@gmail.com.

Oliynykov Roman,
Dr. Habil, professor, V.N. Karazin Kharkiv National University; visiting professor, Kharkiv National Uni-
versity of Radio Electronics; Research Fellow, IOHK, Hong Kong, e-mail: roliynykov(@gmail.com.

Rodinko Mariia,

PhD student, lecture assistant, V.N. Karazin Kharkiv National University; Researcher, IOHK, Hong Kong
e-mail: m.rodinko@gmail.com.

ISSN 1019-5262. KibepHeruka ta cucteMHuit anaiis, 2021, rom 57, Ne 2 127



