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STOCHASTIC GENERALIZED GRADIENT METHODS FOR TRAINING
NONCONVEX NONSMOOTH NEURAL NETWORKS1

Abstract. The paper observes a similarity between the stochastic optimal control of discrete
dynamical systems and the learning multilayer neural networks. It focuses on contemporary
deep networks with nonconvex nonsmooth loss and activation functions. The machine learning
problems are treated as nonconvex nonsmooth stochastic optimization problems. As a model of
nonsmooth nonconvex dependences, the so-called generalized-differentiable functions are used.
The backpropagation method for calculating stochastic generalized gradients of the learning
quality functional for such systems is substantiated basing on Hamilton–Pontryagin formalism.
Stochastic generalized gradient learning algorithms are extended for training nonconvex
nonsmooth neural networks. The performance of a stochastic generalized gradient algorithm is
illustrated by the linear multiclass classification problem.

Keywords: machine learning, deep learning, multilayer neural networks, nonsmooth nonconvex
optimization, stochastic optimization, stochastic generalized gradient.

INTRODUCTION

The machine learning problem consists of the identification of parameters of a neural

network model, e.g., neural weights, using a set of input-output observations. The training

task is formulated as the task of minimizing some smooth loss functional (empirical risk),

which measures the average forecast error of the neural network model.

Methods of training (identification) of large neural network models are discussed in

many articles and monographs [1–11]. To train deep (i.e., multilayer) neural networks,

the stochastic gradient method, and its modifications are mainly used [9–11], adopted

from the theory of stochastic approximation [12] and stochastic programming [13–15],

since only they are practically applicable for training such networks. The stochastic

gradient of the risk functional is a random vector whose mathematical expectation

approximates the gradient of the target functional, and the stochastic gradient descent

method is an iterative method for changing the desired model parameters in the direction

of the stochastic (anti-) gradient.

To solve smooth neural network training problems, the backpropagation of error

technique, BackProp method, is widely used [1–8], i.e. a special method for calculating

gradients of the target functional over various parameters. The history of discovery,

development, and application of the BackProp method was studied in [8]. Nonsmooth

machine learning tasks arise when using nonsmooth (module type) indicators of the

quality of training, when applying nonsmooth regularizations, and also when using

nonsmooth (for example, piecewise linear, ReLU, etc.) activation functions in

multilayer neural networks [5, Sec. 6.3.1; 6, Sec. 3.3; 8]. Such functions give rise to

essentially nonconvex nonsmooth functionals of the quality of learning, and the

question arises of the convergence of the stochastic generalized gradient descent

method in solving such problems. This problem has been relatively recently recognized

and is already being considered in the literature [16–21]. However, it is usually
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assumed using the Clarke stochastic subgradients [22] of the optimized functional but

the problem of their calculation for deep networks is not profoundly discussed.

In this paper, we extend the BackProp method to calculating stochastic gradients

of nonconvex nonsmooth problems for training multilayer neural networks and

formulate the method in terms of stochastic generalized gradients of the nonsmooth

Hamilton–Pontryagin function. As a model of nonsmooth nonconvex dependencies,

we use the so-called generalized-differentiable functions [23, 24]. We also consider

an important version of the BackProp method for training the so-called recurrent

neural networks, i.e. networks with feedbacks and memory [5, Sec. 10].

In the paper, we show that the convergence of the stochastic generalized gradient

method follows from the earlier results of the theory of nonconvex nonsmooth

stochastic optimization [24–28]. In [16], as descent directions, Clarke stochastic

generalized gradients of the optimized risk functional are used. However, the question

remains, what kind of objects the backpropagation method calculates in the case of

a nonsmooth nonconvex functional and whether these objects can be used for

optimization purposes. It may be supposed that the BackProp method calculates the

(stochastic) Clarke subgradients of the optimized function but this takes place only

in the case of the so-called subdifferentially regular functions [22, Sec. 2.3], that can

be not the case. In this connection, it was proposed in [24, 27–30] to randomize

the method of generalized gradient descent, namely, to calculate gradients not at the

current iteration point but at a random close point, where the Lipschitz function is

almost always differentiable.

Thus, although the problems of learning deep smooth neural networks have been

studied for a long time, there are several new aspects related to the nonsmoothness of

networks that still require discussion:

nonconvexity and nonsmoothness of the optimized risk functional;

methods for calculating stochastic (generalized) gradients for nonsmooth

nonconvex networks;

a convergence of the stochastic gradient method in the nonconvex nonsmooth case;

the method parameters control and the method modifications for solving

nonconvex nonsmooth problems;

multiextremal nature of learning tasks;

the possibility of retraining a neural network model.

The purpose of this article is to apply results of the theory of nonconvex

nonsmooth stochastic programming to machine learning problems and to discuss the

peculiarities of the application of the stochastic (generalized) gradient method for

these problems. In particular, we illustrate the application of the stochastic

generalized gradients method to the problem of multiclass linear classification.

1. NONCONVEX NONSMOOTH LEARNING PROBLEMS
AND CALCULATION OF STOCHASTIC GENERALIZED GRADIENTS

Let us consider a standard neural network model. Let the network consists of m layers

of neurons, each layer i m�{ }1, ,� has ni neurons with numbers j ni�1, ,� and each

of them has ni�1 inputs and one output. In the initial layer, there are n1 neurons, each

neuron of this layer has n0 common inputs and one output. The outputs of neurons of

each layer go to the inputs of neurons of the next layer. The output layer of the

network may consist of one or more neurons.

In the theory of neural networks, the standard mathematical model of neuron

( , )i j is some smooth activation function g x wi
j

i ij ij( , , )� (e.g., the logistic sigmoid, the

hyperbolic tangent, and etc. [5, Sec. 6.3.2; 6]), which expresses the dependence of the
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output signal x i j( )�1 of neuron ( , )i j on the input signal xi , for example,

x g x w x wi j i
j

i ij ij i ij ij( ) ( , , ) ( exp , )�
�� � � �� � �1

11� �{ } ,

where xi
ni� �R 1 is a common input of all neurons in layer i; wij

ni� �R 1 and

� ij � �� � �( , ) are the individual weight vector and the activation level of neuron

j ni�{ }1, ,� in layer i; the expression � �x wi ij, denotes the scalar product of

vectors xi and wij . The weights wij and thresholds � ij may satisfy constraints

w Wij ij� , � ij ijV� . Here notation like R n is used for n-dimensional Euclidian

vector space.

Nonsmooth machine learning tasks arise when using nonsmooth indicators of the quality

of learning, when applying nonsmooth regularization functions, and when using nonsmooth

(for example, piecewise linear) activation functions in multilayer neural networks, for

example, g x w x wi
j

i ij ij i ij ij( , , ) max , min , ,� �� � � � �{ { }}1 1 [5, Sec. 6.3.3].

For example, piecewise linear activation functions are essentially used in the dynamic

brain model with positive BSB feedbacks (brain-state-in-box) [31, Sec. 14.10, p. 884].

In [5], the problem of non-differentiability is informally discussed, caused by

a nonsmooth activation function, e.g. the function of linear rectification (the positive

part of the argument) g z z( ) max ,� { }0 and its generalizations g z z z( ) max ,� { }� � ,

g z zi I i( ) max� � , and others [5, Sec. 6.3, p. 169; Subsec. 6.3.1, p. 170; Sec. 6.6,

p. 197]. The use of piecewise linear activation functions instead of the sigmoidal

functions significantly improved the quality of direct neural networks [3, 32].

Note that activation functions themselves can be random, for example, neurons

can accidentally fall into the so-called sleep (drop out [5, 6]) state, i.e. produce a zero

output signal: g x w g x wi
j

i ij ij ij ij i
j

i ij ij( , , , ) ( , , )� � � �� 	 , where � ij is an additional

random parameter taking values 1 or 0 with probabilities pij and 1� pij . We assume

that the random parameters { }� ij are independent and combined into a vector

� �� { }ij that takes values from a finite set 
 .

In what follows, we assume that the activation functions g x wi
j

i ij ij ij( , , , )� � of

neurons j ni�1, ,� in each layer i for any fixed value of � ij are generalized-differentiable

over their variables ( , , )x wi ij ij� in the sense of the following definition, which covers

all practical examples.

Definition 1 [23, 24, 33]. A function f n: R R� 1 is called generalized-differentiable

at point z n�R , if in some �-neighborhood { R }z z zn� � �: | | | | � of the point z it is

defined an upper semicontinuous at z multivalued mapping  	f ( ) with convex

compact values  f z( ) and such that the following expansion holds true:

f z f z d z z o z z d( ) ( ) , ( , , )� � � � � � , (1)

where d f z� ( ), � 	 	 �, denotes the scalar product of two vectors, and the

remainder term o z z d( , , ) satisfies the condition: lim ( , , ) / | | | |
k

k k ko z z d z z
��

� � 0

for all sequences d f zk k� ( ), z zk � , as k �� . A function f is called

generalized-differentiable if it is generalized-differentiable at each point z n�R ;

the mapping  	f ( ) is called the generalized gradient mapping of the function f ;

the set  f z( ) is called a generalized gradient set of the function f ( )	 at point z;

vectors d f z� ( ) are called generalized gradients of the function f ( )	 at point z .
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Properties of generalized-differentiable functions were studied in details

in [23, 24, 33]. Any generalized-differentiable function f z( ) is locally Lipschitzian

and its Clark subdifferential C f z( ) [22] is the minimal (with respect to inclusion)

generalized gradient mapping for f z( ), i.e. for all z n�R it takes place  �f z( )

�C f z( ) and for almost all z n�R it holds  � f z f zC( ) ( ) [24, Theorem 1.10].

The class of generalized-differentiable functions contains continuously differentiable,

convex, concave, weakly convex and weakly concave [26], semismooth [34],

and some other piecewise smooth functions [35], and is closed with respect to the

operations of maximum, minimum, superposition and mathematical expectation

(see [23, 24, 33, 36]).

Suppose there is a (training) set { R R }( , ), , ,x y s Ss n
m
s nm

1 1
0 1� � �� � of

observations of a network inputs-outputs. The standard training (identification)

task for the network with the training quality criterion �( , )x y
m
s

m
s

� �1 1
(for example,

�( , )x y
m
s

m
s

� �1 1
� �� �| | | |x y

m
s

m
s

1 1
2 ) is as follows:

J w
S

x yij ij

s

S

m
s

m
s

u Wij ij
( , ) ( , ) min{ } { } {� ��� �

�
� � ��E

1

1
1 1 } { }, �ij ijV� , (2)

where x
m
s nk

� �
1

R is the vector of outputs of the last network layer for a training

example s; y
m
s nk

� �
1

R is a known, generally speaking, multidimensional vector

of observations of the network outputs; | | | |wij denotes a norm of the vector wij ;

E� is the mathematical expectation operator over �; the sequence of layers’

outputs { }Tx x x i mi
s

i
s

in

s

i

� � �( , , ) , , ,
1

2 1� � for a given first layer input x s n
1

0�R

is given by the relations

x g x w
i j

s
i
j

i
s

ij ij ij( )
( , , , )� �

1
� � , j ni�1, ,� ; i m�1, ,� . (3)

The empirical criterion J wij ij( , ){ } { }� in (2) can be interpreted as the

mathematical expectation of the random quantity �( , )x y
m
s

m
s

� �1 1
over a discrete

random variable � �� ( , )s that takes values in the set � 
� �{ }1, ,� S .

In machine learning, together with (2), regularized problems are considered

[5, Ch. 7; 6, Sec. 4.1]:

J w
S

x yij ij m
s

m
s

s

S

( , ) ( , ){ } { } E� ��� �� �
�
�1

1 1
1

� � �
��

��� 	 
� �
�i ij ij

j

n

i

m

u Ww
i

ij ij i
( | | | | | | | | ) min ,

11

{ } { j ijV� } (4)

with smooth (� � 2) and nonsmooth (� �1) regularizing terms | | | | , | | | |wij ij
� �
 ,

and (penalty) parameters 	 i � 0 for layers i m�1, ,� . Regularization, on the one
hand, improves the conditionality of the problem, and on the other hand,
suppresses the influence of excess neurons in the network.

Moreover, possibly, the training examples may contain not only the input and output

of a network (for example, features and labels of objects) { }( , ), , ,x y s Ss
m
s

1 1
1� � � , but

also may include additional intermediate features yi
s ni�R , i I m� � { }2, ,� , which can

be used to improve the learning of the intermediate layers of the network, i.e. training
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examples may take the form of sequences { { } }( , , , ), , ,x y i I y s Ss
i
s

m
s

1 1
1� �� � . Then the

criterion of the quality of training takes the following form:

J w
S

x y wij ij i
s

i
s

i Is

S

i ij( , ) ( , ) ( | | | |{ } { }� � 	�
�� �

��
��E

1

1

� �
��
�� | | | | )
 �

ij

j

n

i

m i

11

� �� �
�

� ��E� ��
1

1 1
1S

x y
m
s

m
s

s

S

u W Vij ij ij ij
( , ) min ,{ } { }. (5)

That’s why, next, we consider the following general network training task:

J u x u xi i i

i

m

m m u U( ) ( ( ), ) ( ( )) min� � �
�

� � ��E E� �� � � �
1

1 1 (6)

subject to constraints (satisfied for all values of the random parameter ���):

x g x u g x ui i i i i
j

i ij j

ni
� �� �1 1

( ) ( ( ), , ) ( ( ), , )� � � � �{ } , i m�1, ,� ; x
n

1
0( )� �R . (7)

Here u u um
l� �( , , )1 � R (l ni

i

m

�
�
�

1

) is the vector of all adjusted parameters;

x x xi i ini
�

�
( , , )1 1

�

T is the input vector for neurons in layer i ; uij is the vector of

the adjusted parameters of neuron ( , )i j ; u ui ij j

ni� �
�

{ }
1

1
is the vector of the adjusted

parameters of all neurons in layer i; gi
j is the activation function of neuron j in

layer i; g gi i
j

j

ni� �{ }
1

is the vector activation function of the neurons in layer i;

x
n

1
0( )� �R is a random vector of input signals to the network; � is a random

vector parameter that defines the distribution of input signals and influences on

the propagation of signals through the network; E� denotes the sign of the

mathematical expectation over �.

In problems (2)–(5) u wij ij ij� ( , )� , the role of the random parameter � is played by

the random pair � �� ( , )s ; here x x s
1 1

( )� � , � � � �m m m m
sx x s y� � � ��1 1 1 1

( ( )) ( ( , ), ),

and

� � �

� � 	 
� �

i i i

i i
s

i ij ij

x u

x s y w

( ( ), , )

( ( , ), ) ( | | | | | | | |

�

� � ), ,

( | | | | | | | | ), .

j

n

i ij ij

j

n

i

i

i I

w i I

�

�

�

�

�

� �

�

�

�
�

�

�

1

1

	 
� �

�

We make the following assumptions.

Assumptions. Suppose that in problem (6), (7) the functions � i i ix u( , ),

g x ui
j

i ij( , , )� , and �m mx� �1 1( ) are generalized-differentiable over the totality of their

arguments, respectively, over ( , )x ui i , ( , )x ui ij , and xm�1 (under fixed �). Here,

the activation function g x ui
j

i ij( , , )� can be of a general form, i.e. optionally,

the function gi
j may depend not on all elements of the vector xi and the dimension of

the vector of the adjustable parameters uij may not coincide with the dimension of the

vector of inputs xi . The random parameter ��� is a random variable defined on some

probability space.

Note that in the literature (see, for example, [16–21]), for the purpose of training

neural networks, it is proposed to use (stochastic) Clarke subgradients of the risk
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functional J u( ) but these subgradients are relatively simple to calculate only for

subdifferentially regular Lipschitz functions [22, §2.3, §2.7], and for general nonconvex

nonsmooth functions, their calculation may be a problem.

The next theorem exploits a similarity between optimal control problems for

discrete dynamical systems and multilayer neural networks, and formalizes a method

for calculating stochastic generalized gradients in the problem of training a nonconvex

nonsmooth neural network. It extends the well-known method of “backpropagation of

the error” (BackProp) [1–5] to nonconvex nonsmooth learning problems.

First, we introduce the following notation. For arbitrary generalized-differentiable

(by the totality of variables) vector functions g x ui
ni( , )�R with arguments

x x x n n� �( , , )1
�

T R , u u ul l� �( , , )1
�

T R , we denote the matrices:

g

g g

g g

g

g

ix

ix ix

ix

n

ix

n

ixn

i
n
i

�

�

�

�
�
�
�

�

�

�
�
�
�

�
1

1

1 1 1
�

� � �

�

�

ix
ni

�

�

�
�
�
�

�

�

�
�
�
�

, g

g g

g g

g

g

iu

iu iu

iu

n

iu

n

iul

i
l

i

�

�

�

�
�
�
�

�

�

�
�
�
�

�
1

1

1 1 1
�

� � �

�

�

iu
ni

�

�

�
�
�
�

�

�

�
�
�
�

;

and for arbitrary generalized-differentiable (over the totality of arguments) scalar

functions f x ui ( , ), x n�R , u l�R , and �m x�1 ( ), x n�R , let us introduce vectors:

( ) ( , , )f f fix ix ixn
T � 1 � , ( ) ( , , )f f fiu iu iul

T � 1 � , ( ) ( , , )� � �kx kx kxn
T � 1 � ,

where ( , )f fix iu
T , ( , )g gix

j
iu
j T are some generalized gradients of the functions

f i ( , )	 	 , gi
j ( , , )	 	 � ; � ( ) ( )m x� 	1 is some generalized gradient of the function �m�1;

the expression ( )	 T denotes the transposition of the matrix ( )	 .

Theorem 1. Under the assumptions made, the objective function J u( ) of problem (6),

(7) is generalized-differentiable with respect to variables u u u
n

m
nm� � �( , , )1

1R R� ,

and the vector

h u h x u h x uu u u( , ) ( ( ( ), ( ), ), ( ( ), ( ), )� � � � � � �� 1 1 1 1 2 2 2 21 2
, ...

..., ( ( ), ( ), ))h x umu mm m mm
� � � T , (8)

is a stochastic generalized gradient of the function J u( ) at a given point u, i.e.

E� �h u J uu ( , ) ( )� , where h x u f x u g x ui i i i i i i i i i i( , , ) ( , ) ( , )� �� � 	T , i m�1, ,� ,

is a discrete (over i) Hamilton–Pontryagin function; the vector

h x u h x u hiu i i i iu i i i iui i i

( ( ), ( ), ) ( ( ( ), ( ), ), ,� � � � � �� 1 � ni x ui i i( ( ), ( ), ))� � � T �

� � 	( ( ( ), ) ( ( ), ) ( ), , (f x u g x u f
iu i i

iu
i i i iui i i

ni1 1
� � � �T

� x ui i( ), )� �

� 	 �g x u
iu

i i i
n

i
ni

iT T R( ( ), ) ( ))� � � (9)

is the ui -component of a generalized gradient of the function hi i( , , )	 	� , i m�1, ,� ;

x x xm( ) ( ( ), , ( ))� � �� �1 1� is a discrete random trajectory of process (7),

corresponding to the given sequence of parameters ( , , )u u um1 � � and the random

initial data x R
n

1
0( )� � . Here, the random sequence of auxiliary (conjugate) vector

functions ( ( ), , ( )) ( )� � � � � �1 � m � is determined through the backpropagation

equations (adopted from the Pontryagin maximum principle):
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� � � �m m x mm
x( ) ( ( ))( )� � ��1 11

,

� � � � � �i ix i i i ix i i ix
h x u f x u g

i i i
� � � �1 ( ) ( ( ), ( ), ) ( ( ), ) (T x ui i i( ), ) ( ),� � �	 (10)

i m m� �, , ,1 2� ;

( ( ( ), ), ( ( ), ))f x u f x uix i i iu i i� � T , ( ( ( ), ), ( ( ), ))g x u g x u
ix
j

i i iu
j

i i� � T are some generalized

gradients of the functions f i ( , )	 	 , gi
j ( , , )	 	 � at the point ( ( ), )x ui i� and

� �( ) ( ( ))m x mx� �1 1 is some generalized gradient of the function �m�1 at the point

xm�1 ( )� , which are used in (9), (10).

Proof. Note that process (7) can be formally treated as a stochastic dynamic

system in discrete time i m� �1 1, ,� with sates xi , control parameters ui , a given

initial state x1 ( )� , and the optimality criterion (6). The stochasticity of system (7) is

generated by the random input x1 ( )� , a random mechanism of dropping out of

neurons, and, possibly, by other factors. So the present theorem is a particular case

of a similar Theorem 7 from [37], established for discrete stochastic dynamic system.

Similar to the proofs of Theorems 6, 7 from [37] and using relations (7), the vectors

xi , i m� �2 1, ,� , can be sequentially excluded from the formulation of the

optimization problem (6). Then under the sign of summation in (6) there remains

some complex composite function

f u x u u u x ui i i i

i

m

m m( , ) (~ ( , , , ), ) (~ ( ,� � � �� ��
�

� �� 1 1

1

1 1 1� � , , ))um � ,

which depends on optimization variables u and where ~ ( , , , )x u ui i1 1� � � are complex

compound functions of their arguments. And since the class of generalized-differentiable

functions is closed with respect to compositions, then under the made assumptions

this function f u( , )� becomes generalized-differentiable with respect to u for each

��� . The mathematical expectation E� (in this case, summation) does not move out

from the class of generalized-differentiable functions, therefore the function

J u f u( ) ( , )� E� � is also generalized-differentiable with respect to u. Now, similar

to the proofs of Theorems 6–8 from [37], applying the rules of differentiation of

the sum, the chain rule of differentiation of complex generalized-differentiable

functions (which are analogues to the rules of differentiation of smooth and convex

functions) [23, 24, 33], and introducing auxiliary variables (10), after some algebraic

transformations (see [37, Theorem 6]), we obtain formula (8) for stochastic

generalized gradients h uu ( , )� of the function J u( ). The proof is complete.

Formulas (8), (9) use procedure (7) of direct calculation of the trajectory of

motion x x xm1 2 1, , ,� � and the reverse calculation (10) of auxiliary conjugate

variables � �m , ,� 1, essentially adopted from the Pontryagin maximum principle

[38, 39]. Thus, the vector h uu ( , )� is a stochastic generalized gradient of the function

J u( ) such that E� �h u J uu ( , ) ( )� , and it can be used in stochastic generalized

gradient methods for minimizing the nonsmooth functional J u( ). Note that the set of

generalized gradients J u( ) may be wider than the Clarke subdifferential C J u( ),

and it may turn out that E� �h u J uu C( , ) ( )� . To take this possibility into account, in

the next section we modify the standard stochastic gradient descent method by

introducing an artificial randomization into it.

Neural networks may have a complex and heterogeneous structure. However,

introducing additional dummy neurons, such networks can be reduced to a canonical

multilayer form and for them, one can apply the formulas of Theorem 1.
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Let us consider an important special case of networks, in which the adjusted

parameters are the same for each layer. For example, a network can consist of

identical neurons, or some identical neurons are added to each layer in the

already-trained network, or the network consists of duplicates of the same layer.

Then, similarly to (6), (7), the training task consists in solving the following problem:

J u x u xi i

i

m

m m u u( ) ( ( ), ) ( ( )) min ( ,� � �
�

� � ��E E� �� � � �
1

1 1 1 � , )u Ul �
, (11)

x g x u g x ui i i i
j

i j

ni
� �� �1 1

( ) ( ( ), , ) ( ( ), , )� � � � �{ } , i m�1, ,� ; x
n

1
0( )� �R . (12)

Theorem 2. Under the assumptions made, the objective function J u( ) of problem

(11), (12) is generalized-differentiable with respect to variables u u ul� ( , , )1 � , and

the vector

h x u h x ui i i

i

m

u

iu i i( ( ), ( ), ) ( ( ), ( ),� � � � � �
�
�

�

�

�
�

�

�

�
�

�
1

1
), ( ( ), ( ), ), ...

i

m

iu i i

i

m

h x u

� �
� �

�

�

�
�

1 1
2

� � �

..., ( ( ), ( ), )h x uiu i i

i

m

l
� � �

�
�

�

�

�
�

1

T

, (13)

is a stochastic generalized gradient of the function J u( ) at point u, i.e.,

E� � � �h x u J ui i i

i

m

u

( ( ), ( ), ) ( )

�
�
�

�

�
�

�

�

�
�

�
1

, where h x u f x u g x ui i i i i i i i( , , ) ( , ) ( , )� �� � 	T ,

i m�1, ,� , is a discrete (over i ) Hamilton–Pontryagin function; x x( ) ( ( ),� �� 1 �

� , ( ))xm�1 � is a discrete random trajectory of process (12) that corresponds to

the vector parameter u and the random initial data x R
n

1
0( )� � . Here, the random

sequence of auxiliary (conjugate) vector functions ( , , )� � �1 � m � is determined

through the backpropagation equations:

� � � � � �i ix i i ix i ix ih x u f x u g x
i i i

� � � �1 ( ) ( ( ), ( ), ) ( ( ), ) (T ( ), ) ( )� � �u i	 ,

i m m� �, , ,1 2� , � � � �m m x mm
x( ) ( ( ))( )� � ��1 11

.

This theorem is an analogue of Theorem 6 from [37] and is proved similarly.

2. THE METHOD OF STOCHASTIC GENERALIZED GRADIENT DESCENT
AND ITS VARIANTS

The stochastic gradient descent method is the main method for training deep

neural networks, firstly, because of enormous dimensions of such networks and,

secondly, due to the regularizing properties of the method. The properties of the

stochastic gradient method and its modifications were studied in details in cases of

smooth and convex optimized functions [9–11, 13–15]. In this article, we analyze

this method as applied to nonsmooth nonconvex problems of machine learning.

In the notation and assumptions of the previous section, the learning task (6), (7)

consists in optimizing the complex function of the mathematical expectation

J u f u( ) ( , )� E� � , where

f u x u u u x ui i i i

i

m

m m( , ) (~ ( , , , ), ) (~ ( ,� � � �� ��
�

� �� 1 1

1

1 1 1� � , , ))um � .
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As indicated in Theorem 1, we can assume that the integrand f u( , )� is

generalized-differentiable with respect to variables u u um� ( , , )1 � for each fixed � ;

then the function J u f u( ) ( , )� E� � is also generalized-differentiable with respect to u,

and its stochastic generalized gradients can be calculated by formulas (8), (10).

We now consider the (randomized) method of stochastic generalized gradient

descent to minimize on a convex set U a generalized-differentiable mathematical

expectation function,

J u f u u U( ) ( , ) min� � �E� � . (14)

The method has the form:

u u d d u u u uk
U

k
k

k
u U

k k

k

k�
�� � � � � � � �

�1 21

2
� ( ) min , | | | |�

�
arg

�
��

�

�
��, (15)

d d u f uk k k
u

k k� �(~ , ) (~ , )� � , | | ~ | |u uk k
k�   , k � 0 1, ,� , (16)

where k denotes an iteration number; �U ( )	 is the projection operator on a convex

feasible set U ; d u( , )� is a ( , )u � -measurable section (see [36] for details) of

a generalized gradient mapping  u f u( , )� of the generalized-differentiable random

function f ( , )	 � ; { }�k k, , , ...� 0 1 are independent identically distributed observations

of the random variable � ; points { }~u k are randomly sampled from the sets

{ }u u uk
k: | | | |�   ; non-negative quantities � k , k can depend on { }u uk0 1, ,�

�

but must be measurable with respect to the �-algebra �{ }u uk0 1, ,�

� and with

probability one must satisfy the conditions:

lim limk k k k�� ��� � � 0 , � k

k�

�

� � ��
0

, �
k

k

2

0�

�

� � �� . (17)

Here, the randomization consists in calculating the current generalized gradient

d u f uk k
u

k k(~ , ) (~ , )� �� not at the current iteration uk but at a random close

point ~u k , where | | ~ | |u uk k
k�   . A similar idea of randomization of the

generalized gradient descent algorithm is used in [24, 29, 30]. If k ! 0 , then

method (15)–(17) turns into the usual method of stochastic generalized gradient

descent. If U n� R , then the projection operation �U ( )	 in method (15) is absent.

We denote N uU ( ) the cone of normals to the set U at a given point u.

Theorem 3 (convergence with probability 1 of the non-convex randomized method

of stochastic generalized gradients [28, Sec. 2; 29, Theorem 5]. Under conditions (17), for

almost all trajectories of the process (15), (16), the minimum (in terms of the function J)

limit points of the sequence { }uk belong to the set U u U J u N uC C U
" � � � �{ }: ( ) ( )0

of points satisfying the Clarke’s necessary optimality conditions [22], and all limit points

of the numerical sequence { }J uk( ) constitute an interval in the set J J UC C
" "� ( ). If the

set JC
* does not contain intervals (for example, JC

" is finite or countable), then all limit

points of the sequence { }uk belong to the connected subset of UC
" , and there is a limit

lim ( )k
k

CJ u J��
"� .

If in algorithm (15)–(17) all k ! 0, then the statement of Theorem 3 holds for

the set U u U J u N uU
" � � � �{ }: ( ) ( )0 [27, Theorem 5.1]. The convergence of the

randomized method of generalized gradient descent for deterministic problems is

shown in [27, Remark 4.2; 28; 40, Remark 4.2]. Similar results on the convergence of

62 ISSN 1019-5262. Ê³áåðíåòèêà òà ñèñòåìíèé àíàë³ç, 2021, òîì 57, ¹ 5



the (nonrandomized) method of stochastic generalized gradient descent using

generalized Clarke gradients for piecewise smooth Lipschitz (Whitney stratifiable)

functions were recently obtained (by another, differential inclusion method) in [16].

Many other stochastic methods of convex optimization were considered in [6, 7, 9, 11]

(methods with averaging the trajectory, averaging generalized gradients, ravine step

methods, heavy ball, and others). In [24], these methods were extended to problems of

non-convex nonsmooth stochastic optimization, in particular, the stochastic ravine

step method for solving problem (14) has the form:

y u0 0� ,

y u dk
U

k
k

k� � �1 � ( )� ,

u y y yk k
k

k k� � �� � �1 1 1	 ( ), k � 0 1, ,� ,

where d d u f uk k k
u

k k� �( , ) ( , )� � ; { }�k k, , ,� 0 1 � are independent identically

distributed observations of the random variable �; numbers � 	k k, satisfy conditions:

0 1   �� � �k k , � k

k

� ��
�

��

�
0

, �
k

k

2

0

� ��
�

��

� ; 0 1  �	 	k .

This is a stochastic analog of the deterministic ravine method [41], which, when

optimizing smooth convex functions, has a high convergence rate of the order

O k( / )1 2 [42]. A geometric interpretation of the method shows that it moves

(descends) along the “gullies” of the minimized function or the boundary of the

feasible region. In [6, 7, 11, 43–45], adaptive step adjustments in stochastic

gradient optimization methods are considered.

The randomized method also admits the following interpretation [24]. We

introduce the so-called smoothed functions:

J u
V

J u duk

u uk k

( ) (~) ~

|| ~ ||

�
�  
#

1

 

, (18)

where V
k is the volume of the k -neighborhood of zero. If we introduce a random

vector ~u k , uniformly distributed in the k -neighborhood of point u, then the

smoothed function J uk ( ) and its gradient $J uk ( ) can be represented, respectively,

in the form J u J uk
k( )

~
(~ )� E and $ � J u J uk

k( )
~

(~ )E , where
~
E denotes the

mathematical expectation over ~u k ,
~

(~ )E J u k denotes the mathematical expectation

over ~u k of the random multivalued mapping ( , ~ ) (~ )u u J uk k� under fixed u.

Thus, the randomization in method (15)–(17) plays a threefold role: on the one hand,

it allows us to narrow the convergence set of the generalized gradient method to the set

U UC
" "� , and on the other hand, it provides to method (15)–(17) some global

properties due to the fact that it minimizes the sequence of smoothed functions J uk ( ).

Besides, the randomization prevents the method to sticking at critical points that are

not local minima. In case  k � the randomized generalized gradient method

(15)–(17) becomes a stochastic gradient method for minimizing the same non-changing

smoothed function J uk ( ). To strengthen global properties of method (15)–(17) it is

possible to use the estimate of the gradient of the smoothed function (18) using several

independent realizations of a random point ~u from k -vicinity of the current point uk .
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Note that the use of smoothed functions with the norm || | | max | |u ui i� allows

us to construct stochastic finite-difference minimization methods, i.e. methods

without calculating subgradients [24, 46]. A review of randomized gradient

algorithms for optimizing smooth functions is also available in [47].

3. THE METHOD OF STOCHASTIC GENERALIZED GRADIENTS IN THE LINEAR
CLASSIFICATION PROBLEM

As an illustration of the application of the method of stochastic generalized gradient

descent for training nonsmooth neural networks, we consider the classical problem

of multiple classifications of objects based on a family of precedents [4, 7, 48–50].

For classification purposes, the methods of nonsmooth optimization were used

in [51–53], and the method of stochastic generalized gradients was used in [7].

The linear classifier can be used as an output layer of a deep neural network in

transfer learning models [5, Sec. 15.2; 6]. In this section, we use the stochastic

generalized gradient method to solve the multiclass classification problem with

a new learning/loss function.

The abstract setting of the problem has the following form. Let a graph be given

and fixed, which is used for the representation of classification objects. Such objects

will be the subsets of edges (or vertices, or both) of this graph. Each object can have

several forms, i.e. it can be represented by different collections of edges. In this

model, edges can be interpreted as features of the objects, and each instance of an

object can be interpreted as a set of specific features. Obviously, instead of edges,

graph vertices can be used to represent objects. Let the edges of the graph be

numbered. We will encode objects with (0, 1)-strings with the number of elements

equal to the number of edges. Moreover, 0 or 1 at a certain position in the string

means that this edge is not used or is used to represent the object. Thus, a set of

training examples is encoded by a set of (0, 1)-strings with labels belonging to one or

another class. A graphical interpretation is used to visualize objects. Representation of

objects in the form of (0, 1)-lines can be noisy, i.e. instead of 0 and 1 in the string at

their positions can be random numbers with values from zero to one. By noising, we

can expand the original training set arbitrarily largely. Examples may include

unclassified objects as a separate class, therefore, without loss of generality, we

assume that all examples belong to one or another class. In numerical experiments,

noisy codes of stylized numbers and letters were used.

Let us denote x x x xn� �( , , , )0 11 � the vector of features of a presented object,

where for convenience the feature x0 1� is introduced, and xi �{ }0 1, or xi �[ , ]0 1 . We

introduce a numerical ( )m n� -matrix W wij� { }, where m is the number of classes,

with rows w w w wi i i in� ( , , , )0 1 � , which must be determined based on training

examples. The linear classification method k x( ) determines the class of the object x

under the found weights W according to the formula:

k x x wi m i( ) max ,� � �  arg 1 .

The matrix of weights W can be found in many ways. For example, it can be

found by minimizing the smooth convex cross entropy function:

F W
w x

w x

i
s

i
s

i

m
s

S

W
s( ) ln

exp ,

exp ,

min� �
� �

� �

�

�

� �
�

1

1

, (19)

where S is the number of training examples; x x x xs s s
n
s� ( , , , )

0 1
� denotes the

feature vector of the example s ; is is the known class number (label) for the
example s. For comparison, we also use the classic learning function:
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 ( ) max , , min,W w x w x

s

S

i m i i i
s

i
s

Ws s
� �

�
� � � � � � �

�
��

�
  %�

1

1 . (20)

This article also proposes to use the following nonsmooth convex learning function:

& ( ) max , , minW w x w x

s

S

i m i
s

i
s

Ws
� �

�
� � � � � � �

�
��

�
  �

1

1 . (21)

Compared to 
 ( )W , the function & ( )W is advantageous in that its optimal (zero)

value is known (for linearly separable data). The advantage of the function &( )W

compared to F W( ) is in its simplicity. It’s obvious that & ( )W � 0. If the classes are

linearly separable, i.e. there exists a matrix W" such that i w xs i m i
s� � �  

"arg max ,1

for all s S�1, ,� , then min ( )W W& � 0. Note that the set of minima of the function

& ( )W is not empty and includes non-trivial subsets of the space of all ( )m n� -matrices,

in particular, all matrices such that their rows coincide belong to the set of minima of

the function & ( )W . Therefore, not all minima of the problem min ( )W W& are suitable

for solving the classification problem. The tasks of minimizing the functions F W( ),

& ( )W , and 
 ( )W can be solved by the method of stochastic subgradients. Denote

&s
i m i

s
i

s
i

s
i

sW w x w x w x w x
s s s

( ) max , , , ,� � � � � � � � � � � �  "1 , where the index is
" is

such that max , ,1  � � � � �"i m i
s

i
sw x w x

s
. Subgradients of the function &s W( ) have the

following components:

&
w

s

j
s

s s

j
s

s s
ij

W

x i i i i

x i i i i( )

,

,

,

�

� %

� � %

"

"

if and

if and

if0 i i i i i i is s s s� � % %

�

�
��

�
�
�

" "or and( );

i m�1, ,� ; j n� 0 1, , ,� .

If an index s (the number of a training example) is chosen randomly and

equiprobably, then the vector with the components

( ( ), , ( ), ( ),& & &
w

s

w

s

w

sW W W
n10 1 20

� �

� � �, ( ), , ( ), , ( )) ( )& & & &
w

s

w

s

w

s
w
s

n m mn

W W W W
2 0

T �

is called the stochastic subgradient of the function &( )	 at a point W.

The randomized method with averaging stochastic subgradients for solving

problem (21) has the form:

w w
L

Wij
k

ij
k

k w

s kl

l

L

ij

t�

�

� � 	 �1

1

1
� & (

~
), i m�1, ,� , j n� 0 1, , ,� , (22)

where k � 0 1, ,� denotes the iteration number of the algorithm; { }s kk , , ,� 0 1 � are

independently and equally likely taken numbers of training examples; W wk
ij
k� { } is

( )m n� -matrix with components wij
k ;

~ ~W wkl
ij
kl� { } is ( )m n� -matrix with components

~wij
kl ; { }&

w

s kl

ij

k W(
~

) are components of the the stochastic generalized gradient &w
s klk W(

~
)

at a random point
~

W kl such that | |
~

| |W Wk kl
k�   ; W 0 is an initial set of weights;

L is the number of subgradients averaged at each iteration. In numerical experiments,

it was set � �k k� 0
1 2/ / ,  �k k� 0

1 3/ / . In the classical stochastic subgradient

method, it is assumed that k ! 0, L �1. When solving problems (19), (20) in

method (22), instead of &w
sk the subgradients of the functions F and 
 are used.
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Figures 1–6 show the results of training linear classifiers by the stochastic

subgradient method using learning functions &( )W ,
 ( )W , and F W( ). The numbers of

train and test examples were 230, initial weights were either zero or random, steps
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Fig. 1. The performance of the stochastic subgradient method on the function & under zero initial weights

Fig. 2. The performance of the randomized stochastic subgradient method on the function & under zero
initial weights
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� t t� �0 5. . In Figs. 1, 3, 6 t � 0, L �1. In Figs. 2, 4, 5 t t� �0 3. , L �10 . These

figures show typical examples of performance of the constructed linear classifiers, i.e.

they show the fractions of correctly recognized examples in the training and test
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Fig. 4. The performance of the randomized stochastic subgradient method on the function & under ran-
dom initial weights

Fig. 3. The performance of the stochastic subgradient method on the function & under some random initial
weights
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samples, as a function of the number of iterations of the stochastic subgradient method.

The results of the numerical experiments indicate that the linear classification with the

function & is more effective than using classical functions F and 
 .
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Fig. 5. The performance of the stochastic subgradient method on the function 
 under zero initial
weights

Fig. 6. The performance of the randomized stochastic subgradient method on the function F under zero
initial weights
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CONCLUSIONS

In the present work, the following results were obtained:

the well-known method of backpropagation of errors is extended to nonconvex

nonsmooth machine learning problems;

the randomized stochastic generalized gradient method is substantiated for the

training nonsmooth nonconvex deep neural networks;

for the linear classification problem, a variant of the error function is proposed and

the advantages of the method of stochastic generalized gradients are demonstrated.

It is of interest to extend the methods of block-coordinate [11] and asynchronous

[17, 20] stochastic gradient descent to general nonconvex nonsmooth machine

learning problems, which are smoothed out through artificial randomization.
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Â.². Íîðê³í
ÑÒÎÕÀÑÒÈ×Í² ÓÇÀÃÀËÜÍÅÍ² ÃÐÀÄ²ªÍÒÍ² ÌÅÒÎÄÈ ÍÀÂ×ÀÍÍß ÍÅÎÏÓÊËÈÕ
ÍÅÃËÀÄÊÈÕ ÍÅÉÐÎÍÍÈÕ ÌÅÐÅÆ

Àíîòàö³ÿ. Ó ñòàòò³ â³äì³÷åíî ïîä³áí³ñòü ì³æ ñòîõàñòè÷íèì îïòèìàëüíèì êåðóâàííÿì äèñ-
êðåòíèìè äèíàì³÷íèìè ñèñòåìàìè òà íàâ÷àííÿì áàãàòîøàðîâèõ íåéðîííèõ ìåðåæ. Ðîáîòó
çîñåðåäæåíî íà äîñë³äæåíí³ ñó÷àñíèõ ãëèáîêèõ ìåðåæ ç íåîïóêëèìè íåãëàäêèìè
ôóíêö³ÿìè âòðàò òà àêòèâàö³¿. Ïðîáëåìè ìàøèííîãî íàâ÷àííÿ ðîçãëÿíóòî ÿê íåîïóêë³ íå-
ãëàäê³ çàäà÷³ ñòîõàñòè÷íî¿ îïòèì³çàö³¿. ßê ìîäåëü íåãëàäêèõ íåîïóêëèõ çàëåæíîñòåé âè-
êîðèñòàíî òàê çâàí³ óçàãàëüíåíî äèôåðåíö³éîâí³ ôóíêö³¿. Ìåòîä çâîðîòíîãî îá÷èñëåííÿ
ñòîõàñòè÷íèõ óçàãàëüíåíèõ ãðàä³ºíò³â ôóíêö³îíàëó ÿêîñò³ íàâ÷àííÿ äëÿ òàêèõ ñèñòåì
îá´ðóíòîâàíî íà îñíîâ³ ôîðìàë³çìó Ãàì³ëüòîíà–Ïîíòðÿã³íà. Ñòîõàñòè÷í³ óçàãàëüíåí³ àë-
ãîðèòìè ãðàä³ºíòíîãî íàâ÷àííÿ ïîøèðåíî äëÿ íàâ÷àííÿ íåîïóêëèõ íåãëàäêèõ íåéðîííèõ
ìåðåæ. Åôåêòèâí³ñòü ñòîõàñòè÷íîãî óçàãàëüíåíîãî ãðàä³ºíòíîãî àëãîðèòìó ïðî³ëþñòðîâà-
íî ïðèêëàäîì ë³í³éíî¿ áàãàòîêëàñîâî¿ êëàñèô³êàö³éíî¿ çàäà÷³.

Êëþ÷îâ³ ñëîâà: ìàøèííå íàâ÷àííÿ, ãëèáîêå íàâ÷àííÿ, áàãàòîøàðîâ³ íåéðîíí³ ìåðåæ³,
íåãëàäêà íåîïóêëà îïòèì³çàö³ÿ, ñòîõàñòè÷íà îïòèì³çàö³ÿ, ñòîõàñòè÷íèé óçàãàëüíåíèé
ãðàä³ºíò.
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