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DEVELOPING A MODEL FOR MODULATING MIRROR FIXED ON
ACTIVE SUPPORTS. DETERMINISTIC PROBLEM'

Abstract. We consider a problem of a modulating a mirror fixed on active supports. It is
assumed that the mirror may have several defects. The problem is to find optimal locations of
supports as well as control forces providing the best approximation of a given shape and phase
of the oscillations for a homogeneous mirror as well as a plate with defects that have definite
geometric and mechanical characteristics. The model of the Kirchhoff plate is chosen to
describe the mirror. Defects are modeled by small inhomogeneities with changed elastic
characteristics. An iterative technique for modeling finite-size defects in the Kirchhoff plate by
point quadrupoles is developed. Isolated active supports are modeled by point forces. The
optimization parameters are: the location of the supports and the amplitudes and phases of
forces that generate vibrations. As an optimality criterion, the minimum of the
root-mean-square deviation of the waveform of the plate from the given pattern is used.
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INTRODUCTION

In this work we generalize results obtained before in [1,2]. We optimize
parameters of mechanical devices for excitation and formation of wave motion.
These devices can be used for generation, transformation, and transmission of
information (and in more general sense transmission of wave energy). Particularly,
we consider a problem of modulating a mirror fixed on active supports [2], and
developed a model for optimizing of structure of these supports [1]. The problem
is to find control forces and their characteristics (application points, amplitude and
phase of oscillation), which provide the best approximation of a given shape and
phase of the mirror oscillation taking into consideration structural inhomogeneities
(defects) with unknown geometric and mechanical characteristics [3]. Mechanical
properties of the defects are described by the following parameters: material
density, Young’s modulus of material, and cylindrical stiffness. We considered
that any defect has elliptical form with stochastic parameters [4, 5]. To speed up
calculations, we simplified the elliptical defect model and showed that in the first
approximation equivalent body load does not depend on defect orientation [4]. We
estimated error for the first approximation [5,6]. We investigated how defect
modeling accuracy depend on number of circular harmonics [6].

In this part of the study, we solve a deterministic problem in which it is assumed
that the characteristics of defects are known. Thus, the problem of determining the
shape of the plate vibration is reduced to a boundary problem with distributed point
quadrupoles, which, in the first approximation, model inhomogeneities with known
characteristics. Modeling of active supports by point forces makes it possible to use
the Green’s function method.

We also formulate an optimization problem in order to determine the best
characteristics of the exciting forces, namely, their location, amplitudes and phases, which
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provide the smallest deviation of the mirror oscillation form from the given oscillation
form. We use the minimum of the root-mean-square deviation as an optimality criterion.

DEFECTS MODELING

The section describes the approach to modeling of inhomogeneities in the plate
using the apparatus of generalized functions [5, 6].

Let a defect with a cylindrical stiffness D; be located in the region P(x, y)>0.
A cylindrical stiffness of region P(x, y)< 0 without defects is D,. The plate is loaded
by external forces of intensity ¢, which are applied in points without defects. Suppose
that VP ‘ peg 0 where P is simple connected and convex. Then the equations of

harmonic oscillations of the plate can be written in the form [7]:
L(-DoL)Lyw+p oo’ w+q =0, P(x, y)<0, 1)
L(-D;L{)Low+ p 0’ w=0, P(x, y)>0,

where the following notations were introduced:

9 92
9 0 o ox Oy 0
Ox Oy 0 0 Ox
Lo= ,Li=| v= 2 | L=,
0 0 g 2 1 ax 8_)/’ 2 g
Oy Ox l-vd 1-v o Oy
2 oy 2 oOx
_ ] )
2 2 2
L:LgLo N R .
ox? 8y2 Oxdy

Taking into consideration that D, = Dy —AD,AD/ Dy =kp, p0w2 / Dy = k4,

(1) can be written as:
L(-L)Low+k*w=—g, P(x, »)<0,
LL(—Ll)L2w+p1k4w:0, P(x, y)>0.

poll—kp)
We consider a piecewise homogeneous model of inhomogeneity, namely:

(€)

D =Dy (1-k pO(P)), @
p=pol—K,0(P)),
L, P>0 -
where O(P)=<" > is a function of region, K, = Po—P1
O, P< O, Po
Then (3) can be rewritten in the form of a single equation, valid in the whole area:
L(-(1-k pO(P)LLyw+k* (1 -k ,0)w=—q, (5)
or
LL,Lyw—k*w= Di +Kk pLOPIL Lyw—k K 0w, (x,) €Q. (6)
0
For convenience, we introduce another notation:
vx
U= L1L2W =|v y
U,y
Vector ¥ has no physical meaning, however:
5= -M /Dgy, P(x,y)<0, 7

—M /Dy P(x,y)>0.
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Let us consider the part of the right-hand side of (6) that describes the
inhomogeneity of cylindrical stiffness in region 6(P)> 0.

It is easy to see that (L] L (06, @) = (v, L) L ®). Really, (L) i, @) =—(ii ", VO),
where i = L0, and —(i6, V®) = — ((L0)6, V) = (36, L1 Ly ®).

According to the mean value theorem:
0’ _o0%d 2%
ox? oxdy’ 8y2

(v, LO) :SPT)(X)[

where Sp = pow(P). _
Remark 1. It can be shown that O (S p ) can be replaced by O(S 12, ). Thus,

] +0(Sp), ®)
X

LO(P)v =
2 2
=spo| SO0 5y PEHIBWN) FOUT) 5 x) v o(5F). 9)
ox Ox dy 6y2 -

Volumetric loads equivalent to heterogeneity are interpreted as a superposition of
double balanced dipoles (Fig. 1).
Thus, taking into account (7), (9), equation (6) takes the form:

2 —
0 (5(x2 X) Sy

LL Lyw—k*w="T +k,8p +{v,(X) ~Y)+
D ) Ox
+2uxy(X)aé(x_X)a‘§(y_Y)+vy(X)M6(x—X) =
Ox oy oy?
— kK ,S ,W(X)O(x - X)O(y—Y)+O(S}), (10)

where X =(X,Y) is a defect center with characteristics « p,k ,,S,.

We are looking for a solution in the form: w=w + xw;, confining ourselves to
the first two terms of the expansion in a small parameter kK<<l (k<<1
(k=0(k pok p)) ). Neglecting change in p (k p =0). Then we have

LL L,wy —k*wy =—L-,
1-2Wo wo Do
2
LL Lyw; —k*w, =UOX(X)%2_X)5()/—Y)+ (11)
X
2
+2v0xy()()aé(x_)()‘3(3(y_Y)Jr1)()y()()7‘9 0= 50— x)

Ox oy oy?
Equations (11) were obtained with accuracy O(S 2 ). Obviously, the first equation (11)

describes the deflection of the plate provided that there is no inhomogeneity.
Let the Green’s function w" (x, X) be constructed as [2]:

LLL,w* (x, X)—k*w" (5, X)=0(x - X), xeQ, X eQ, X =x, (12)

where x =x(x, y) is the observation point, X = X (X,Y) is the source point.

&

®|©®
©®

Fig. 1. Representation of inhomogeneity in the form of balanced dipoles
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Let w" satisfy homogeneous boundary conditions:

ES
X)=0
v sX=0 r (13)
M* (x, X)=0,
Then, wy(x, X') satisfying (11) can be constructed as:
02w (x, X) 2w* (x,X) %w* (x, X)
X ) =00 (X)) g (X)) e ey (X )22 (14
w1 (X, X) =00, (X) 2 oy (X) K0T 0y (X) 7?2 (14)

In addition, it is easy to see that w; satisfies the boundary conditions (13). Indeed,
for example:

ow' (x, X) ~ lim w X +AX)—w (x,X),
oX Ax—0 AX
ow™ (x, X)
X

but w* (x, X) satisfies (13) for V €Q, hence, as well as the higher

derivatives (within the limits of smoothness) satisfy (13).
Let us move on to the polar coordinates. Let (X,Y) = (R, D), ((x, y) = (r,¢)).
Simple geometric transformations:

v, cos? ) sin? ¢ sin2p v,
Vy = sin? ") cos? @ —sin2p | |v, (15)
Vip —%sin2<p %sinZgo cos2¢p v,

as well as definition (7) allows one to obtain the polar components of vector v:

BN T . "

T2 or? or 8g02 ’

v, =+ 2w [ ow o%w]) (16)
r? or? or 6<p2

v 1-v) razw ow

A

With this in mind, the first approximation of the boundary value problem (11),
(13) has the form:

W X) =;Z{R2vor(X><R,cD)

2w x, X
W)

5 P W (v, X) ow" (x,X) ow' (x,X) *w"(x,X)
{R e o [Frop (O R—— =+ poe , (17)

where v, Vg, Vo, are determined through the zeroth order approximation.

Thus, to solve the direct problem you need:

1. Find wy (by solving the first equation (11) and satisfying the boundary
conditions of the form (13)).

2. Construct the Green’s function w* from (12), (13).

3. Find vy, vy, Vony from (16).

4. Implement the formula (17).

5. As a result, we get the solution for a plate with defect with parameters R, @,

L K
Sp, kp, as a first approximation: w = w +SP1 Dy,
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OPTIMIZATION PROBLEM. DETERMINISTIC SETTING

Let 7 +1 forces with intensities Fj =uy +ivy (k :(ﬁ) be applied to the plate at
points & k(g pe, ), k=11, £((0). In addition, the plate contains J defects
(rdj,<p d; K j25i), jzl,ﬁ. For a given profile function W(r,¢) it is required to

determine &, F} from the optimization problem:

1 T
1(R)=ijrdrj | w(r, @) = W(r,p)|*dip — min. (18)
2710 =
Let
W(’”a‘P):WO(”a‘P)"‘Wl(”a‘P)a (19)

where w (7, ¢) is the optimal solution to the deterministic problem for a homogeneous
plate with appropriate controls & 2, F kO’ which minimize

1 4
Ig(R) === [ rdr [ [wo (o) = W(r.p) 2. (20)
2 0

—JT

We are looking for a solution in the form wo(r,<p)=F00w80+

I
+ ZF kow* (r, VEO P —<pg ), where WSO, w" are Green’s functions, defined in the
k k
k=1
problem (12), (13). These functions, as well as solution, and implementation of this
stage are very similar to methodology presented in [2]. In what follows, wyis
considered as known. Moreover, wj(r,¢) is defined in (17) and looks like:

J o°w* (x; X ;)
wi(rp) =D e 400 (X ) ————=
Jj=1

Fw x| Lei |, 2w (5 X ;)

2 ‘

+U0y(Xj)

21)

o2w* (X ;) ow™ (X ;) x ow' (X ;) o2w* (X ;)
i S — — |+v ; ; +
7 oRo® oD A (AT Iy

K N
where v is determined for w, by (16), and ¢; =17]S j» where K ; 1s
J

inhomogeneity measure, and §; is the area of the jth inhomogeneity. We assume
J

that D e ;<<1, ie., [[w][<<| wpll.
J

REMARKS ON THE IMPLEMENTATION OF THE OPTIMIZATION PROBLEM

In a preliminary study of problem (20), we can take the known part of the control
variables of the problem, namely, the points of application of forces: rg , ¢¢ , k=1,1.

In this case, the optimization problem becomes quadratic and has an exact solution.
If we take 7z, = rgo N =gog (that is the optimal positions of the forces for
k k

a homogeneous plate), then we can obtain the first approximation of the problem of
the complete problem (20). So, /[(R)=(w—-W,w—-W), and w=w +w;, where
1

[| wil|<<||wpl|. The solution to the problem can be represented as: w, = z g F;,
i=0
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I
w = ZSiF ;, where g;, s; are some functions defined from (18), (20). Problem (20) is
i=0
the classical optimal approximation problem in 2 (€2) with basis {gi,si}ll.zo. The
Gram system for this task has the form [8]:
I _
D (g +5))F (g5 +50)= (W, g5 +55), s=0, 1. 22)
i=0
Wherein, in the absence of inhomogeneities, (20) has the form of a system of
linear equations:

070 _70 1,0 I 70" 041 0 0
K'F"=b", K :{Kis}i,szo’ b :{bs }s=0’ Kis :(ghgs)’ bs :(ngs)' (23)
The solution to this problem (see [2]) is denoted by F °°Pt.
With this in mind, (22) is a system of linear equations of the form:
K® +KHF =5° + 5!, where
1
KiS=(giass)+(Siags)+(siass)’
by = (W, s5).
Let F=F%+F!' where F? is defined in (23) and || F!||<<||F°|. Then
(K0 +K! )(150 +151):l;() +b'. Neglecting a small member Klﬁl, with known

FO=F OOpt, solving (22) reduces to a system of linear equations to find F:

24

KF!'=p' —K!F? (25)
with the solution F' =K% '(' -K'F?).

EXAMPLES OF CALCULATIONS

As calculation examples, the optimal excitation parameters of the plate with
defects were found to achieve the shape of vibration defined by the expression:

Wik, r,¢)=(=1o(k)/ Jo(k)Jo(kr) + 1o (kr)) +
+ (= 1y (k) ] Jy (k) Jy (Kr) + 1y (Rr))e'™®. (26)

The pattern (26) is presented in Fig. 2. As was shown in [2], this form provides
a wave traveling in the circular direction.

In dimensionless form, the first resonant frequencies are: kg =2.232,
kop =5.455, ki1 =0, kyp, =3.734.

The calculations were performed for the low frequency region (k =1.2324 —
quasi-static excitation), for the midrange frequency region (k = 3.2324 — between the
first and the second resonant frequencies), and for the high frequencies (k =5.91 —
higher than the second resonant frequency) of excitation. The number of harmonics
taken into account was determined automatically.

In each group, at a fixed excitation frequency, in addition to the central force,
examples with different numbers of forces were considered. Forces were grouped by
2 forces located centrally symmetrically. Group radii, orientation angles (angles
between axes of force groups and a fixed direction), amplitudes and phases of forces
are taken as control parameters. As the location of the active supports, the optimal
locations for a defect-free plate are taken. The optimal values of the excitation forces
for a defect-free and defective plate are determined independently. Thus, the location
of the supports, which is a design parameter, is determined based on the assumption
that the plate is ideal. The presence of defects in the plate is proposed to be
compensated by the selection of exciting forces.
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Real and Imaginary parts of pattern

Fig. 2. Target surface shape

We placed 3 groups of 1
inhomogeneities on the plate. The centers 08
of the groups were set randomly in 0
accordance with the uniform distribution. '
Inhomogeneities in groups were placed 04
randomly relative to the centers of 0.2
groups in accordance with the normal 0
distribution law with o =0.03, 0.04, 0.05. o2
The total number of inhomogeneities in %
the groups was randomly selected |
(evenly distributed) within N, =150, | ~*6 @
N pax =250. Measures of defect | -0s
heterogeneity kp were chosen in 1
accordance with the law of uniform T 080604202 002 04 06 08
distribution within «p;, =—0.5,

Fig. 3. The characteristic distribution of defects on

K pmax =0.5. Positive values of kp - plate

correspond to weakening of the material
in the defect area (circles in Fig. 3),
negative values to toughening (asterisks in Fig. 3). Effective defect radii are
uniformly distributed random variables with limits 7 ;, =0.01, 7 10 =0.08. Some
typical examples of defect distributions are shown in Fig. 3.

Table 1. Results of calculations in low-frequency, medium-frequency and
high-frequency ranges

k key_def I(R) NF R, SF MF
1.2324 0 1.82e— 04 5 0.443, 0.443 1.74 1.37
1.2324 1 3.2e-03 5 0.443, 0.443 2.05 7.3
1.2324 0 5.77e-05 7 0.545, 0.545, 0.545 1 1.18
1.2324 1 3.1e-03 7 0.545, 0.545, 0.545 2.17 5.94
3.2324 0 4.08¢—04 5 0.447, 0.447 0.094 0.136
3.2324 1 6.85¢—03 5 0.447, 0.447 0.128 0.152
3.2324 0 1.18e—05 7 0.546, 0.546, 0.546 0.072 0.089
3.2324 1 1.46e—03 7 0.546, 0.546, 0.546 0.086 0.133

5.91 0 1.32e-02 5 0.351, 0.351 0.437 0.628
5.91 1 1.07e-01 5 0.351, 0.351 0.518 0.595
5.91 0 2.04e-03 7 0.551, 0.551, 0.551 0.791 0.987
591 1 1.94e-02 7 0.551, 0.551, 0.551 0.886 1.05
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Position of forces, their normed amplitudes (size of circle) and phases (grayscale)
for homogeneous plate and for the plate with defects

1
0.8
0.6
0.4
0.2

0
-0.2

=04

| 05 -06-04-02 0 02 04 06 05 1 1 -0.8 0.6 -04-02 0 02 04 06 08 1

Real and Imaginary parts of approximation error in the case of the homogeneous plate

Real and Imaginary parts of approximation error in the case of the plate with defects

Fig. 4. The oscillation of the plate with 5 forces in the high frequency range (k =5.91)

The computational procedure for each example is:

e finding the optimal location of the active supports and the values of the
optimal excitation forces for a defect-free plate;

e introduction of a random set of defects into the plate;

e finding the optimal values of the optimal excitation forces for a defective plate
with the optimal arrangement of active forces for a defect-free plate;

e finding waveforms for a defect-free and defective plate.

Calculation results are summarized in Table 1 and are illustrated in Figs. 4 and 5.
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Position of forces, their normed amplitudes (size of circle) and phases (grayscale)
for homogeneous plate and for the plate with defects

1

0.8
0.6
0.4
0.2

0
-0.2
-0.4
-0.6
-0.8

-1
1 -08 -06-04-02 0 02 04 06 05 1 1 -08-06-04-02 0 02 04 06 08 1

Real and Imaginary parts of approximation error in the case of the homogeneous plate

Real and Imaginary parts of approximation error in the case of the plate with defects

Fig. 5. The oscillation of the plate with 7 forces in the high frequency range (k =5.91)

In Table 1 key def means the presence (1) or absence of defects, / (R) is the value of
the root-mean-square deviation (formula (18), (20)), NF is the number of control
forces, R, is the optimal radii of force groups, SF' is the root-mean-square value of
forces amplitudes, MF is the maximum amplitude of forces, k& is vibration excitation
frequency.
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The calculations were carried out for two and three groups of forces, each of
which includes two forces located symmetrically. The frequency of excitation of
oscillations was chosen in three frequency ranges.

e In low-frequency (quasistatic) range k =1.2324 — below the value of the first
resonant frequency ko =2.232, with the reference waveform corresponding to the first
asymmetric waveform,;

e In mid-frequency range k =3.2324 — above the value of the first resonant
frequency, but below the second resonance ky, =3.734 with the reference waveform
corresponding to the first asymmetric form of natural vibrations;

e In high-frequency range k =5.91 — above the value of the frequency of the
second symmetric resonance kg, =5.455;

Visual interpretation of the results for £ =5.91 is given in Figs. 4 and 5.

Results obtained are presented in Table 1.

CONCLUSIONS

The article presents the basic formulas which are necessary for calculating the
control actions in the form of point active supports to obtain the optimal
waveform of monoharmonic forced oscillations of a round plate. The optimization
procedure is based on minimizing the root-mean-square deviation of the wave
profile of the plate from the given one. The points of location of active supports,
amplitudes and phases of forces are taken as control parameters. Since the
optimization problem is not convex, additional studies have been carried out to
substantiate the result. The article analyzes both an ideally homogeneous plate and
a plate with randomly located inhomogeneities simulated by a set of small defects.
The constructed theory has an applied character. An approximate solution of
formal boundary value problems was sought in the form of segments of Fourier
series along the circumferential coordinate. The inhomogeneities were modeled by
point sources with a recursively increased singularity order.

The presented theory is the basis of the numerical implementation. Test
calculations were carried out, and demonstrate the correctness of the problem
statement and its solution. The optimization package PSG 3.2.0 [9] was used in the
calculations. The calculation results are shown in Fig. 4, Fig. 5 and in Table 1. The
figures show the optimal positions of the supports, the normalized values of the
optimal amplitudes and phases of the control forces, as well as the deviations of the
plate vibration modes from the given one in various frequency ranges, various
numbers of supports, in the absence and presence of defects. Table 1 shows the
dependences of the values of the root-mean-square deviation, the optimal radii of
force groups, the root-mean-square values of the amplitudes of the optimal forces and
the maximum values of the amplitudes of the optimal forces on the oscillation
frequency, the presence or absence of defects, and the number of active supports.

As can be seen from the presented calculations, both for a homogeneous plate
and for a plate with defects, it is possible to choose the optimal location and control of
active supports, which provide a sufficiently high quality approximation of a given
form of plate vibrations. In this case, the control forces and the quality of the
approximation essentially depend on the presence of inhomogeneities and the
oscillation frequency. At the same time, the optimal location of the supports weakly
depends on the presence of inhomogeneities and the oscillation frequency. The
location of the supports should be chosen based on the given form of vibrations. So,
in the considered numerical example, in order to achieve the best result, the supports
(not taking into account the central fixed support) should be placed symmetrically on
one concentric circle, the radius of which depends significantly on the number of
supports. The natural result is an improvement in the quality of the approximation
with an increase in the number of forces. It should be noted that such conclusions are
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partly the result of the symmetry of the given form of vibrations, chosen in the form
of a waveform traveling in a circumferential direction (Fig. 2).

The results of the article can be used in the design of active controllable
reflective elements in multichannel information or energy transmission systems.
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I''M. 3paxkeBcbknii, B.®. 3paxeBcbka, O.M. I'onogHikos

PO3POBJIEHHSI MATEMATUYHOI MOJEJI MOJAYJIOBAJIBHOI'O J3EPKAJIA,
3AKPIIIVIEHOI'O HA AKTUBHHUX OIIOPAX. JETEPMIHOBAHA 3AJJAYA

AHoTauisi. 3anpornoHOBaHO MaTeMaTH4YHY [ETEPMiHOBaHY MOJENb MOJYJIFOBAIBHOIO J3epKaja,
3aKpIIUICHOT0 HAa aKTHBHHX OIOpax, 3a MPUITYLICHHS, 0 A3epKajo MoKe MICTUTH AedekTu. 3a-
Ja4a TOJSrae y 3HaXOKEHHI ONTHMAIbHOIO PO3TAIIYBaHHS OIOp, a TAKOXK CHJI KEepyBaHHS, SKi
Ou 3abe3mevniid Halkpalie HaONVKEHHs 3a1aHoi GopMu Ta po3nofiny a3 KOoNWBaHb SK OJ1-
HOPIAHOTO J3epKaia, Tak 1 A3epkana 3 Aedekramu, IO MarOTh 3aJaHi FEOMETPHYHI Ta Me-
XaHIuHI XapakTepucTuku. s ommcy n3epkana obpano moxens ractuau Kipxroda. Mogemro-
BaHHS JE(EKTiB BUKOHAHO 3 BUKOPUCTAHHSIM HEOJHOPITHOCTEH MaluX Po3MipiB 31 3MiHEHUMHU
MPY)KHUMH XapaKTepuCTUKaMH. Po3poOiieHo iTepamiifHuii MEeToa MOAETIOBaHHS Ne(eKTiB oOMe-
KeHOro po3mipy Ha miactuHi Kipxroda 3 BHKOPHCTAHHSM TOYKOBHX KBaIpymojiB. Mojeinto-
BaHHS i30/IbOBAaHUX AKTHBHUX OINOP BUKOHAHO TOYKOBHMH cuiamu. [lapamerpamu ontumizauii €
pO3TalIyBaHHS ONOp, aMILTITyau Ta (asu CUJl, IO MPOAYKYIOTh KOJNHBAHHS. SIK KpHTepiil onTH-
MaJIbHOCTI BHKOPHCTaHO MIHIMYM CEpeIHBOKBAIPATHYHOTO BIIXWIICHHS XBIJIBOBOI (hOpMH ILIAC-
THHU Bifl 3aaHOI.

Kurwou4ogi cioBa: MOYJIIOBAJIbHE A3€pPKaJio, IUIaCTHHA 3 ﬂeq}eKTaMH, ONTUMAaJIbHE 36yH)KeHH$I.
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