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DEVELOPING A MODEL FOR MODULATING MIRROR FIXED ON
ACTIVE SUPPORTS. DETERMINISTIC PROBLEM1

Abstract. We consider a problem of a modulating a mirror fixed on active supports. It is
assumed that the mirror may have several defects. The problem is to find optimal locations of
supports as well as control forces providing the best approximation of a given shape and phase
of the oscillations for a homogeneous mirror as well as a plate with defects that have definite
geometric and mechanical characteristics. The model of the Kirchhoff plate is chosen to
describe the mirror. Defects are modeled by small inhomogeneities with changed elastic
characteristics. An iterative technique for modeling finite-size defects in the Kirchhoff plate by
point quadrupoles is developed. Isolated active supports are modeled by point forces. The
optimization parameters are: the location of the supports and the amplitudes and phases of
forces that generate vibrations. As an optimality criterion, the minimum of the
root-mean-square deviation of the waveform of the plate from the given pattern is used.

Keywords: modulating mirror, defected plate, optimal excitation.

INTRODUCTION

In this work we generalize results obtained before in [1, 2]. We optimize
parameters of mechanical devices for excitation and formation of wave motion.
These devices can be used for generation, transformation, and transmission of
information (and in more general sense transmission of wave energy). Particularly,
we consider a problem of modulating a mirror fixed on active supports [2], and
developed a model for optimizing of structure of these supports [1]. The problem
is to find control forces and their characteristics (application points, amplitude and
phase of oscillation), which provide the best approximation of a given shape and
phase of the mirror oscillation taking into consideration structural inhomogeneities
(defects) with unknown geometric and mechanical characteristics [3]. Mechanical
properties of the defects are described by the following parameters: material
density, Young’s modulus of material, and cylindrical stiffness. We considered
that any defect has elliptical form with stochastic parameters [4, 5]. To speed up
calculations, we simplified the elliptical defect model and showed that in the first
approximation equivalent body load does not depend on defect orientation [4]. We
estimated error for the first approximation [5, 6]. We investigated how defect
modeling accuracy depend on number of circular harmonics [6].

In this part of the study, we solve a deterministic problem in which it is assumed
that the characteristics of defects are known. Thus, the problem of determining the
shape of the plate vibration is reduced to a boundary problem with distributed point
quadrupoles, which, in the first approximation, model inhomogeneities with known
characteristics. Modeling of active supports by point forces makes it possible to use
the Green’s function method.

We also formulate an optimization problem in order to determine the best
characteristics of the exciting forces, namely, their location, amplitudes and phases, which
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provide the smallest deviation of the mirror oscillation form from the given oscillation
form. We use the minimum of the root-mean-square deviation as an optimality criterion.

DEFECTS MODELING

The section describes the approach to modeling of inhomogeneities in the plate
using the apparatus of generalized functions [5, 6].

Let a defect with a cylindrical stiffness D1 be located in the region P x y( , ) � 0.
A cylindrical stiffness of region P x y( , )� 0 without defects is D0 . The plate is loaded
by external forces of intensity q , which are applied in points without defects. Suppose

that
�

� �
�

P
P 0

0, where P is simple connected and convex. Then the equations of

harmonic oscillations of the plate can be written in the form [7]:
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We consider a piecewise homogeneous model of inhomogeneity, namely:
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Then (3) can be rewritten in the form of a single equation, valid in the whole area:
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Let us consider the part of the right-hand side of (6) that describes the
inhomogeneity of cylindrical stiffness in region �( )P � 0.
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where S pow PP � ( ).
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Volumetric loads equivalent to heterogeneity are interpreted as a superposition of
double balanced dipoles (Fig. 1).

Thus, taking into account (7), (9), equation (6) takes the form:
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where X X Y� ( , ) is à defect center with characteristics � � � �D S, , .
We are looking for a solution in the form: w w w� �0 1� , confining ourselves to

the first two terms of the expansion in a small parameter ��� 1 (��� 1
( ( , ))� � ���O D ). Neglecting change in � (� � # 0). Then we have
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Equations (11) were obtained with accuracy O S( )�
2 . Obviously, the first equation (11)

describes the deflection of the plate provided that there is no inhomogeneity.

Let the Green’s function w x X$ ( , ) be constructed as [2]:

LL L1 2
4

xw x X k w x X x X$ $� � �( , ) ( , ) ( )� , x ��, X ��, X x� , (12)

where x x x y� ( , ) is the observation point, X X X Y� ( , ) is the source point.
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Fig. 1. Representation of inhomogeneity in the form of balanced dipoles



Let w$ satisfy homogeneous boundary conditions:
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Then, w x X1 ( , ) satisfying (11) can be constructed as:
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In addition, it is easy to see that w1 satisfies the boundary conditions (13). Indeed,
for example:
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as well as definition (7) allows one to obtain the polar components of vector
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With this in mind, the first approximation of the boundary value problem (11),
(13) has the form:
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where � 0r , � 	0 , � 	0r are determined through the zeroth order approximation.

Thus, to solve the direct problem you need:

1. Find w0 (by solving the first equation (11) and satisfying the boundary
conditions of the form (13)).

2. Construct the Green’s function w$ from (12), (13).

3. Find � 0r , � 	0 , � 	0r from (16).

4. Implement the formula (17).

5. As a result, we get the solution for a plate with defect with parameters R , �,

S P , � D , as a first approximation: w w S wP
D

D

� �
�

0 1
1
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.
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OPTIMIZATION PROBLEM. DETERMINISTIC SETTING

Let I �1 forces with intensities F u ik k k� � � (k I� 0, ) be applied to the plate at

points 
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problem (12), (13). These functions, as well as solution, and implementation of this
stage are very similar to methodology presented in [2]. In what follows, w0 is
considered as known. Moreover, w r1 ( , )	 is defined in (17) and looks like:
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where � 0 is determined for w0 by (16), and �
�

�
j

j

j
jS�

�1
, where � j is

inhomogeneity measure, and S j is the area of the jth inhomogeneity. We assume

that � j

j

J

* �� 1, i.e., | | | | | | | |w w1 0�� .

REMARKS ON THE IMPLEMENTATION OF THE OPTIMIZATION PROBLEM

In a preliminary study of problem (20), we can take the known part of the control

variables of the problem, namely, the points of application of forces: r
k
 , 	
k

, k I�1, .

In this case, the optimization problem becomes quadratic and has an exact solution.

If we take r r
k k k k


 
 
 

	 	� �0 0, (that is the optimal positions of the forces for

a homogeneous plate), then we can obtain the first approximation of the problem of
the complete problem (20). So, I R w W w W( ) ( , )� � � , and w w w� �0 1, where

| | | | | | | |w w1 0�� . The solution to the problem can be represented as: w g Fi
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w s Fi

i
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* , where gi , si are some functions defined from (18), (20). Problem (20) is

the classical optimal approximation problem in L2 ( )� with basis { }g si i i
I, �0

. The

Gram system for this task has the form [8]:
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Wherein, in the absence of inhomogeneities, (20) has the form of a system of
linear equations:
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EXAMPLES OF CALCULATIONS

As calculation examples, the optimal excitation parameters of the plate with
defects were found to achieve the shape of vibration defined by the expression:

W k r I k J k J kr I kr( , , ) ( ( ) / ( ) ( ) ( ))
 � � � �0 0 0 0

� � �( ( ) / ( ) ( ) ( ))I k J k J kr I kr ei
1 1 1 1


 . (26)

The pattern (26) is presented in Fig. 2. As was shown in [2], this form provides
a wave traveling in the circular direction.

In dimensionless form, the first resonant frequencies are: k01 � 2.232,
k02 � 5.455, k11 0� , k12 � 3.734.

The calculations were performed for the low frequency region (k � 1.2324 —
quasi-static excitation), for the midrange frequency region (k � 3.2324 — between the
first and the second resonant frequencies), and for the high frequencies (k � 5.91 —
higher than the second resonant frequency) of excitation. The number of harmonics
taken into account was determined automatically.

In each group, at a fixed excitation frequency, in addition to the central force,
examples with different numbers of forces were considered. Forces were grouped by
2 forces located centrally symmetrically. Group radii, orientation angles (angles
between axes of force groups and a fixed direction), amplitudes and phases of forces
are taken as control parameters. As the location of the active supports, the optimal
locations for a defect-free plate are taken. The optimal values of the excitation forces
for a defect-free and defective plate are determined independently. Thus, the location
of the supports, which is a design parameter, is determined based on the assumption
that the plate is ideal. The presence of defects in the plate is proposed to be
compensated by the selection of exciting forces.
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We placed 3 groups of
inhomogeneities on the plate. The centers
of the groups were set randomly in
accordance with the uniform distribution.
Inhomogeneities in groups were placed
randomly relative to the centers of
groups in accordance with the normal
distribution law with � � 0.03, 0.04, 0.05.
The total number of inhomogeneities in
the groups was randomly selected
(evenly distributed) within N min �150,
N max � 250. Measures of defect
heterogeneity � D were chosen in
accordance with the law of uniform
distr ibut ion within � Dmin � � 0.5,
� Dmax � 0.5. Positive values of kD
correspond to weakening of the material
in the defect area (circles in Fig. 3),
negative values to toughening (asterisks in Fig. 3). Effective defect radii are
uniformly distributed random variables with limits rD min � 0.01, rD max � 0.08. Some
typical examples of defect distributions are shown in Fig. 3.
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Fig. 2. Target surface shape

Real and Imaginary parts of pattern

Fig. 3. The characteristic distribution of defects on
the plate

T a b l e 1. Results of calculations in low-frequency, medium-frequency and
high-frequency ranges

k key def_ I R( ) NF Rg SF MF

1.2324 0 1.82e– 04 5 0.443, 0.443 1.74 1.37

1.2324 1 3.2e– 03 5 0.443, 0.443 2.05 7.3

1.2324 0 5.77e– 05 7 0.545, 0.545, 0.545 1 1.18

1.2324 1 3.1e– 03 7 0.545, 0.545, 0.545 2.17 5.94

3.2324 0 4.08e– 04 5 0.447, 0.447 0.094 0.136

3.2324 1 6.85e– 03 5 0.447, 0.447 0.128 0.152

3.2324 0 1.18e– 05 7 0.546, 0.546, 0.546 0.072 0.089

3.2324 1 1.46e– 03 7 0.546, 0.546, 0.546 0.086 0.133

5.91 0 1.32e– 02 5 0.351, 0.351 0.437 0.628

5.91 1 1.07e– 01 5 0.351, 0.351 0.518 0.595

5.91 0 2.04e– 03 7 0.551, 0.551, 0.551 0.791 0.987

5.91 1 1.94e– 02 7 0.551, 0.551, 0.551 0.886 1.05



The computational procedure for each example is:

+ finding the optimal location of the active supports and the values of the
optimal excitation forces for a defect-free plate;

+ introduction of a random set of defects into the plate;

+ finding the optimal values of the optimal excitation forces for a defective plate
with the optimal arrangement of active forces for a defect-free plate;

+ finding waveforms for a defect-free and defective plate.

Ñalculation results are summarized in Table 1 and are illustrated in Figs. 4 and 5.
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Fig. 4. The oscillation of the plate with 5 forces in the high frequency range (k � 5.91)

Position of forces, their normed amplitudes (size of circle) and phases (grayscale)
for homogeneous plate and for the plate with defects

Real and Imaginary parts of approximation error in the case of the homogeneous plate

Real and Imaginary parts of approximation error in the case of the plate with defects



In Table 1 key def_ means the presence (1) or absence of defects, I R( ) is the value of
the root-mean-square deviation (formula (18), (20)), NF is the number of control
forces, Rg is the optimal radii of force groups, SF is the root-mean-square value of
forces amplitudes, MF is the maximum amplitude of forces, k is vibration excitation
frequency.
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Fig. 5. The oscillation of the plate with 7 forces in the high frequency range (k � 5.91)

Position of forces, their normed amplitudes (size of circle) and phases (grayscale)
for homogeneous plate and for the plate with defects

Real and Imaginary parts of approximation error in the case of the homogeneous plate

Real and Imaginary parts of approximation error in the case of the plate with defects



The calculations were carried out for two and three groups of forces, each of
which includes two forces located symmetrically. The frequency of excitation of
oscillations was chosen in three frequency ranges.

+ In low-frequency (quasistatic) range k � 1.2324 — below the value of the first
resonant frequency k01 � 2.232, with the reference waveform corresponding to the first
asymmetric waveform;

+ In mid-frequency range k � 3.2324 — above the value of the first resonant
frequency, but below the second resonance k12 � 3.734 with the reference waveform
corresponding to the first asymmetric form of natural vibrations;

+ In high-frequency range k � 5.91 — above the value of the frequency of the
second symmetric resonance k02 � 5.455;

Visual interpretation of the results for k �5.91 is given in Figs. 4 and 5.

Results obtained are presented in Table 1.

CONCLUSIONS

The article presents the basic formulas which are necessary for calculating the
control actions in the form of point active supports to obtain the optimal
waveform of monoharmonic forced oscillations of a round plate. The optimization
procedure is based on minimizing the root-mean-square deviation of the wave
profile of the plate from the given one. The points of location of active supports,
amplitudes and phases of forces are taken as control parameters. Since the
optimization problem is not convex, additional studies have been carried out to
substantiate the result. The article analyzes both an ideally homogeneous plate and
a plate with randomly located inhomogeneities simulated by a set of small defects.
The constructed theory has an applied character. An approximate solution of
formal boundary value problems was sought in the form of segments of Fourier
series along the circumferential coordinate. The inhomogeneities were modeled by
point sources with a recursively increased singularity order.

The presented theory is the basis of the numerical implementation. Test

calculations were carried out, and demonstrate the correctness of the problem

statement and its solution. The optimization package PSG 3.2.0 [9] was used in the

calculations. The calculation results are shown in Fig. 4, Fig. 5 and in Table 1. The

figures show the optimal positions of the supports, the normalized values of the

optimal amplitudes and phases of the control forces, as well as the deviations of the

plate vibration modes from the given one in various frequency ranges, various

numbers of supports, in the absence and presence of defects. Table 1 shows the

dependences of the values of the root-mean-square deviation, the optimal radii of

force groups, the root-mean-square values of the amplitudes of the optimal forces and

the maximum values of the amplitudes of the optimal forces on the oscillation

frequency, the presence or absence of defects, and the number of active supports.

As can be seen from the presented calculations, both for a homogeneous plate
and for a plate with defects, it is possible to choose the optimal location and control of
active supports, which provide a sufficiently high quality approximation of a given
form of plate vibrations. In this case, the control forces and the quality of the
approximation essentially depend on the presence of inhomogeneities and the
oscillation frequency. At the same time, the optimal location of the supports weakly
depends on the presence of inhomogeneities and the oscillation frequency. The
location of the supports should be chosen based on the given form of vibrations. So,
in the considered numerical example, in order to achieve the best result, the supports
(not taking into account the central fixed support) should be placed symmetrically on
one concentric circle, the radius of which depends significantly on the number of
supports. The natural result is an improvement in the quality of the approximation
with an increase in the number of forces. It should be noted that such conclusions are
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partly the result of the symmetry of the given form of vibrations, chosen in the form
of a waveform traveling in a circumferential direction (Fig. 2).

The results of the article can be used in the design of active controllable
reflective elements in multichannel information or energy transmission systems.
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Ã.Ì. Çðàæåâñüêèé, Â.Ô. Çðàæåâñüêà, Î.Ì. Ãîëîäí³êîâ
ÐÎÇÐÎÁËÅÍÍß ÌÀÒÅÌÀÒÈ×ÍÎ¯ ÌÎÄÅË² ÌÎÄÓËÞÂÀËÜÍÎÃÎ ÄÇÅÐÊÀËÀ,
ÇÀÊÐ²ÏËÅÍÎÃÎ ÍÀ ÀÊÒÈÂÍÈÕ ÎÏÎÐÀÕ. ÄÅÒÅÐÌ²ÍÎÂÀÍÀ ÇÀÄÀ×À

Àíîòàö³ÿ. Çàïðîïîíîâàíî ìàòåìàòè÷íó äåòåðì³íîâàíó ìîäåëü ìîäóëþâàëüíîãî äçåðêàëà,
çàêð³ïëåíîãî íà àêòèâíèõ îïîðàõ, çà ïðèïóùåííÿ, ùî äçåðêàëî ìîæå ì³ñòèòè äåôåêòè. Çà-
äà÷à ïîëÿãàº ó çíàõîäæåíí³ îïòèìàëüíîãî ðîçòàøóâàííÿ îïîð, à òàêîæ ñèë êåðóâàííÿ, ÿê³
áè çàáåçïå÷èëè íàéêðàùå íàáëèæåííÿ çàäàíî¿ ôîðìè òà ðîçïîä³ëó ôàç êîëèâàíü ÿê îä-
íîð³äíîãî äçåðêàëà, òàê ³ äçåðêàëà ç äåôåêòàìè, ùî ìàþòü çàäàí³ ãåîìåòðè÷í³ òà ìå-
õàí³÷í³ õàðàêòåðèñòèêè. Äëÿ îïèñó äçåðêàëà îáðàíî ìîäåëü ïëàñòèíè Ê³ðõãîôà. Ìîäåëþ-
âàííÿ äåôåêò³â âèêîíàíî ç âèêîðèñòàííÿì íåîäíîð³äíîñòåé ìàëèõ ðîçì³ð³â ç³ çì³íåíèìè
ïðóæíèìè õàðàêòåðèñòèêàìè. Ðîçðîáëåíî ³òåðàö³éíèé ìåòîä ìîäåëþâàííÿ äåôåêò³â îáìå-
æåíîãî ðîçì³ðó íà ïëàñòèí³ Ê³ðõãîôà ç âèêîðèñòàííÿì òî÷êîâèõ êâàäðóïîë³â. Ìîäåëþ-
âàííÿ ³çîëüîâàíèõ àêòèâíèõ îïîð âèêîíàíî òî÷êîâèìè ñèëàìè. Ïàðàìåòðàìè îïòèì³çàö³¿ º
ðîçòàøóâàííÿ îïîð, àìïë³òóäè òà ôàçè ñèë, ùî ïðîäóêóþòü êîëèâàííÿ. ßê êðèòåð³é îïòè-
ìàëüíîñò³ âèêîðèñòàíî ì³í³ìóì ñåðåäíüîêâàäðàòè÷íîãî â³äõèëåííÿ õâèëüîâî¿ ôîðìè ïëàñ-
òèíè â³ä çàäàíî¿.

Êëþ÷îâ³ ñëîâà: ìîäóëþâàëüíå äçåðêàëî, ïëàñòèíà ç äåôåêòàìè, îïòèìàëüíå çáóäæåííÿ.
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