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MINIMAX DEVIATION STRATEGIES FOR MACHINE LEARNING
AND RECOGNITION WITH SHORT LEARNING SAMPLES

Abstract. The article analyses risk-oriented formulation of pattern recognition and machine
learning problems. Based on arguments from multicriteria optimization, a class of improper
strategies is defined that are dominated by some other strategy. A general form of strategies
that are not improper is derived. It is shown that some widely used approaches are improper in
the defined sense, including the maximum likelihood estimation approach. This drawback is
especially apparent when dealing with short learning samples of fixed length. A unified
formulation of pattern recognition and machine learning problems is presented that embraces
the whole range of sizes of the learning sample, including zero size. It is proven that solutions
to problems in the presented formulation are not improper. The concept of minimax deviation
recognition and learning is formulated, several examples of its implementation are presented
and compared with the widely used methods based on the maximal likelihood estimation.
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INTRODUCTION

The short learning sample problem has been around in machine learning under

different names during its whole life. The learning sample is used to compensate

for the lack of knowledge about the recognized object when its statistical model is

not completely known. Naturally, the longer the learning sample, the better the

subsequent recognition. However, when the learning sample becomes too small

(2, 3, 5 elements) the effect of small samples becomes evident. In spite of the

fact that any learning sample (even a very small one) provides some additional

information about the object, it may be better to ignore the learning sample than

to utilize it with the commonly used methods.

Example 1. Let us consider an object that can exist in one of two random states

y �1 and y � 2 with equal probabilities. In each state the object generates two

independent Gaussian random signals x1 and x2 with variances equal 1. Mean values

of signals depend on the state as it is

shown in Fig. 1. In the first state, the

mean value is ( , )2 0 . In the second

state, the mean value depends on an

unknown parameter � and is ( , )0 � .

Even when no learning sample is given

a minimax strategy can be used to

make a decision about the state y.

The minimax strategy ignores the

second signal and makes decision

y� �1 when x1 1� and decision y� � 2

when x1 1� .

Now let us assume that there is

a sample of signals generated by
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Fig. 1. Example 1: ( , )x x1 2
2�� — signal, y� { }1 2, —

state
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an object in the second state but with higher variance 16. A maximum likelihood

strategy estimates the unknown parameter � and then makes a decision about y as if

the estimated value of the parameter is its true value. Figure 2 shows how the

probability of a wrong decision (called the risk) depends on parameter � for different

sizes of the learning sample. In Fig. 2, as well as in all subsequent figures, the curve

R q ML( , )� is the risk of the maximum likelihood strategy, the curve R q minmax( , )� is

the risk of the minimax strategy and the curve min ( , )
q

R q � is the minimum possible

risk for each model. If the learning sample is sufficiently long, the risk of the

maximum likelihood strategy may become arbitrarily close to the minimum possible

risk. Naturally, when the length of the sample decreases the risk becomes worse.

Furthermore, when it becomes as small as 3 or 2 elements the risk of the maximum

likelihood strategy becomes worse than the risk of the minimax strategy that uses

neither the learning sample nor the signal x2 at all. Hence, it is better to ignore

available additional data about the recognized object than to try to make use of it in

a conventional way. This demonstrates a serious theoretical flaw of commonly used

methods, and definitely not that short samples are useless. Any learning sample, no

matter how long or short it is, provides some, maybe not a lot information about the

recognized object and a reasonable method has to use it. End of Example.
Example 2. This is a simple example that has been used by H.Robbins in his

seminal article [1] where he initiated the empirical Bayesian approach and explained

its main idea. An object can be in one of two possible states y �1 and y � 2. In each

state, the object generates a univariate Gaussian signal x with variance 1. The mean

value of the generated signal depends on the state y so that

p x y
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Only a priori probabilities of states are unknown and � is the probability of the

first state so that p y( )� �1 � and p y( )� � �2 1 �. Figure 3 illustrates these data.
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Fig. 2. Probability of a wrong decision (risk) for different sizes n of the learning sample
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A minimax strategy for such an

incomplete statistical model makes

decision y� based on the sign of the

observed signal and ensures the

probability of correct recognition

0.84 independently of a priori

probabilities of states.

Let not only a single object, but

a collection of mutually independent

objects be available for recognition.

Each object is in its own hidden state

and is presented with its own signal. Let us also assume that the decision about each

object’s state does not have to be made immediately when the object is observed and

can be postponed until the whole collection is observed. In this case, maximum

likelihood estimations of a priori probabilities of states can be computed and then

each object of the collection is recognized as if the estimated values of probabilities

were the true values. When the presented collection is sufficiently long the probability

of a wrong decision can be made as close to the minimum as possible (Fig. 4).

However, when the collection is too short, the probability of a wrong decision can be

much worse than that of the minimax strategy. End of Example.
The considered examples lead to a difficult and so far an unanswered question.

What should be done when a fixed sample of 2–3 elements is given and no additional

elements can be obtained? Is it really the best way to just ignore these data or is it

possible to make use of them? We want to fill up this gap between maximum

likelihood and minimax strategies and develop a strategy that covers the whole range

of learning samples lengths including zero length. However, this gap, and it is infact

a gap, shows a theoretical imperfection of the commonly used learning procedures,

namely, of maximum likelihood learning [2, 3]. The short sample problem in whole

follows from the fact that maximum likelihood learning as well as many other

learning procedures have not been deduced from any explicit risk-oriented

requirement to the quality of post-learning recognition. We will formulate such

risk-oriented requirements and will see what type of learning procedures follow.
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Fig. 3. Example 2: x�� — signal, y� { }1 2, — state
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Fig. 4. Probability of a wrong decision (risk) for different sizes n of the learning sample
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1. BASIC DEFINITIONS

Definition 1. An object is represented with a tuple

� � � � �X Y p X YXY, , , :� � �

where X is a finite set of signal values x X� ; Y is a finite set of states y Y� ; � is

a finite set of models ��� ; p x yXY ( , ; )� is a probability of a pair ( , )x X y Y� �
for a model ��� .

A signal x is an observable parameter of recognized object whereas a state y is its

hidden parameter. A pair ( , )x y is random and for each pair ( , )x X y Y� � its

probability p x yXY ( , ; )� exists. However, this probability is not known because it

depends on an unknown model �. As for the model �, it is not random, it takes a fixed

but unknown value. Only the set � is known that the value � belongs to.

Let z be some random data that depend on a model � and take values from

a finite set Z. The data is specified with a tuple � � � �Z p ZZ, : � � , where p zZ ( ; )�

is a probability of data z Z� for model ���.

Definition 2. Random data � � � �Z p ZZ, : � � that depends on a model is called

learning data for an object � � � � �X Y p X YXY, , , :� � � if p x y zXYZ ( , , ; )� �
� �p x y p zXY Z( , ; ) ( ; )� � for all x X� , y Y� , z Z� , ���.

A learning sample (( , ) | , , , )x y i ni i �1 2 � used for supervised learning is a

special case of learning data when

Z X Y n� �( ) and p z p x yZ XY

i

n

i i( ; ) ( , ; )� ��
�
�

1

.

A learning sample ( | , , , )x i ni �12 � for unsupervised learning is another special

case of learning data when

Z X n� and p z p x yZ XY

y Yi

n

i( ; ) ( , ; ).� ��
��
��

1

Any expert knowledge about the true model is also learning data. One can even

consider the case when | |Z �1 and therefore p zZ ( ; )� �1, which is equivalent to

the absence of any learning data at all. We do not restrict learning data in any

way except that for any fixed model the learning data z depend neither on the

current signal x nor on the current state y so that

p x y z p x y p zXYZ XY Z( , , ; ) ( , ; ) ( ; )� � �� � for all x X y Y z Z� � � �, , , � �.

Definition 3. A non-negative function q X Y Z: � � � � is called a strategy if

y Y

q y x z

�
� �( | , ) 1 for all x X� , z Z� .

A value q y x z( | , ) of a strategy q X Y Z: � � � � is a probability of a randomized

decision that the current state of an object is y, given the current observed signal x and

the available learning data z. The set of all strategies q X Y Z: � � � � is denoted Q.

Let � :Y Y� be a loss function whose value �( , )y y� is the loss of a decision �y
when the true state is y.

Definition 4. The risk R q( , )� of a strategy q on a model � is the expected loss

R q p x y p z q y x zXY

y Yx Xz Z

Z

y Y

( , ) ( , ; ) ( ; ) ( | , )

'

� � �� �
��� �
��� � �( , )y y� .

Recall that throughout the paper the sets X , Y , Z, and � are assumed to be finite.

This allows a much more transparent formulation of the main results. Allowing some
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of the sets to be infinite would require finer mathematical tools and the results might

be obscured by unnecessary technical details.

2. IMPROPER AND BAYESIAN STRATEGIES

One can see that the risk of a strategy depends not only on the strategy itself but

also on the model that the strategy is applied to. Therefore, in a general case, it is

not possible to prefer some strategy q1 to another strategy q2 . The risk of q1 may

be better than the risk of q2 on some models and worse on others. However, it is

possible to prefer strategy q2 to strategy q1 if the risk of q1 is greater than the

risk of q2 on all models. In this case, we will say that q2 dominates q1 or q1 is

dominated by q2 .

Definition 5. A strategy q 0 is called improper if a strategy q� exists such that

R q R q( , ) ( , )0 � �� � for all ���.

We want to exclude all improper strategies from consideration and derive a common

form of all the rest. Let T denote the set of all non-negative functions � :�� � such that

�

� �
�
� �
�

( ) 1. Functions of such type will be referred to as weight functions.

Definition 6. A strategy q� is called Bayesian if there exists a weight function

��T such that

q R q
q Q

�

� �

� �argmin � � �
� �

( ) ( , ).

Theorem 1. Each strategy q Q0 � is either Bayesian or improper, but never both.

Proof. For a given strategy q 0 let us define a function F T Q: � � � ,

F q R q R q( , ) ( )[ ( , ) ( , )]� � � � �
�

� �
�
�
�

0 .

According to Definition 4, for any fixed � the risk R q( , )� is a linear function of

probabilities q y x z( | , ). Consequently, for any fixed �, the function F is a linear

function of probabilities q y x z( | , ) as well. Similarly, the function F is a linear

function of weights � �( ) for any fixed strategy q. The set Q of strategies and the set T

of weight functions are both closed convex sets. Consequently, due to the known

duality theorem [4–6] function F has a saddle point ( , )�� �� �T q Q such that

max min ( , ) ( , ) min max ( , )
� �

� � �
� �

� �

� �
� �

T q Q q Q T
F q F q F q ,

where

q F q F q
q Q T T q Q

�

� �

�

� �
� �argmin argmaxmax ( , ), min ( , )

� �

� � � .

It is obvious that F q( , )� 0 0� for any ��T . Therefore, the inequality min ( , )
q Q

F q
�

�� 0

holds for every ��T and, consequently,

max min ( , ) ( , )
�

� �
� �

� �� �
T q Q

F q F q 0.

Therefore, there are two mutually exclusive cases: either F q( , )�� � � 0 or

F q( , )�� � � 0. In such way, the proof of the theorem is reduced to proving the

following four propositions.

Proposition 1. If the strategy q 0 is Bayesian then F q( , )�� � � 0.

Proposition 2. If F q( , )�� � � 0 then the strategy q 0 is Bayesian.

Proposition 3. If the strategy q 0 is improper then F q( , )�� � � 0.
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Proposition 4. If F q( , )�� � � 0 then the strategy q 0 is improper.

Proof of Proposition 1. If the strategy q 0 is Bayesian then according to

Definition 6 a weight function �0 exists such that inequality

� � � � � �
� �

0 0 0

� �
� ��
� �

( ) ( , ) ( ) ( , )R q R q

is valid for all q Q� . Consequently, for all q Q� the chain

0 0 0 0� � � �
� �
� � � � � � �
� ��

( )[ ( , ) ( , )] ( , ) max ( , )R q R q F q F q
T

is also valid. Since all numbers max ( , )
�

�
�T

F q , q Q� , are not negative the least of

them is also not negative and

min max ( , ) ( , )
q Q T

F q F q
� �

� �� �
�

� � 0.

It follows from this inequality that F q( , )�� � � 0 because a case F q( , )�� � � 0 is

impossible.

Proof of Proposition 2. Let F q( , )�� � � 0 then

0 � � � �� �

� � �

�F q F q F q
T q Q q Q

( , ) max min ( , ) min ( , )� � �
�

� � �
�

�

�
�min ( )[ ( , ) ( , )]

q Q
R q R q� � � �

� �

0

�
�

�
�

�

�
� �

�

�

�

�

�
� �min ( ) ( , ) ( ) ( , )

q Q
R q R q� � � � � �

� �� �

0 .

It implies the equality

min ( ) ( , ) ( ) ( , )
q Q

R q R q
�

�

�

�

�
� ��� � � � � �
� �� �

0

and therefore, the equality

q R q
q Q

0 �
�

�

�
�argmin � � �
� �

( ) ( , ) ,

which means that q 0 is Bayesian according to Definition 6.

Proof of Proposition 3. If the strategy q 0 is improper then according to Definition

5 a strategy q1 exists such that inequalities R q R q( , ) ( , )1 0� �� hold for all �. The set of

models is finite and therefore, a value �� 0 exists such that for any � inequality

R q R q( , ) ( , )1 0� � �� � holds and the chain

0 1 0 1� � � � �
� �
�� � � � � � �
� �

( )[ ( , ) ( , )] ( , ) min ( , )R q R q F q F q
q Q

is valid for any ��T . Since all numbers min ( , )
q Q

F q
�

� , ��T , are not greater than �

the greatest of them is also not greater than � and

max min ( , ) ( , )
�

� � �
� �

� �� � �
T q Q

F q F q 0.
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Proof of Proposition 4. Let F q( , )�� � � 0 . In this case,

F q F q F q
q Q T T

( , ) min max ( , ) max ( , )� � �
� �

� �

� � �

�� � �

� � � �
� �

�

�

��max ( )[ ( , ) ( , )] max [ ( , ) (
� � �

� � � � �
T

R q R q R q R

� �

0 q 0, )]�

and therefore

max [ ( , ) ( , )]
�

� �
�

� � �
�

R q R q 0 0.

Consequently, the inequality R q R q( , ) ( , )� �� �0 holds for all models ��� and

q 0 is improper according to Definition 5. �

The theorem gives good reasons to reappraise a lot of well-known methods that

are commonly used as something self-evident. Let us illustrate this criticism with two

simple examples. The first example considers a certain method of recognition without

learning and the second relates to maximum likelihood learning. In both examples,

the loss function is

�( , )
, if ,

, if .
y y

y y

y y
� �

� �

 �

!
"
#

0

1

Example 3. Let x be an image of a letter, y be its name and � be a position of

the letter in a field of vision. Let the function p X YXY : � � �� � be constructively

defined so that probability p x yXY ( , ; )� can be calculated for each triplet x , y, �. In

this case, when an image x with an unknown position � is observed the decision y x� ( )

about the name of the letter has to be of the form

y x p x y
y Y

XY
�

� �

� �( ) ( ) ( , ; )argmax � � �
� �

. (1)

Theorem 1 reveals a certain weakness of the commonly used form

y x p x y
y Y

XY
�

� �
�( ) max ( , ; )argmax

�
�

�
. (2)

The strategy (2) could be represented in the form (1) if the weights � �( ) in (1)

could be chosen individually for each observation x X� . However, each Bayesian

strategy is specified with its own weight function �:�� � so that weights are

assigned to elements of the set � , not of the set �� X . As a rule, the strategy (2)

cannot be represented in the form (1) with fixed weights � �( ) that do not depend

on x. It means that the strategy (2) is not Bayesian and is dominated by some

other strategy that for each position of the letter recognizes its name better than

strategy (2). End of Example.
Example 4. Let the sets X , Y and � be specified for the recognized object as

well as a function p X YXY : � � �� �. Let the learning information be a random

learning sample z x y i ni i� �(( , ) | , , , )12 � such that p z p x yZ XY i i

i

n

( ; ) ( , ; )� ��
�
�

1

.

Then the decision y� about the current state y0 based on the current signal x0

and available learning sample z has to be of the form

y p x y
y Y

i

i

n

i
�

� � �

� � �argmax

0 0

� � �
� �

( ) ( , ; ) (3)

for some fixed � that does not depend on z. One can see that the commonly used
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maximum likelihood strategy

y p x y z
y Y

ML�

�
� argmax

0

0 0( , ; ( ))� , (4)

� �
�

ML
i

i

n

iz p x y( ) ( , ; )�
� �

�argmax
� 1

can almost never be represented in the form (3) with constant weights and therefore

is not Bayesian. It means that some other strategy exists that makes a decision

about the current state based both on current signal and learning information and

for each model makes it better than strategy (4). End of Example.

3. A GAP BETWEEN MAXIMUM LIKELIHOOD AND MINIMAX STRATEGIES

We consider maximum likelihood and minimax strategies and specify a gap

between them. Let us define a strategy q R q
q Q

opt argmin( ) ( , )� ��
�

for each ���

that assigns a probability q y x zopt ( | , ; )� for each triplet ( , , )x y z . The strategy

q opt ( )� is the best possible strategy that should be used if a true model was

known. Since the model is known no learning data are needed. For any fixed

model � a strategy q X Y Z( ) :� � � � � can be replaced with a strategy

q X YX ( ) :� � � � with the same risk. Probabilities q y x z( | , ; )� have to be

transformed into probabilities q y xX ( | ; )� according to expression

q y x p z q y x zX Z

z Z

( | ; ) ( ; ) ( | , ; )� � ��
�
�

and so the chain

R q p x y p z q y x zXY

y Yx Xz Z

Z

y Y

( , ) ( , ; ) ( ; ) ( | , ;� � �� �
��� �
��� �

'

� �) ( , )y y� �

� � �
�� � �
�� � �p x y y y p z q y x zXY

y Yx X y Y

Z

z Z

( , ; ) ( , ) ( ; ) ( | ,� � �
'

; )� �

� � � �
�� �
�� �p x y q y x y y R qXY

y Yx X

X

y Y

X( , ; ) ( | ; ) ( , ) ( , )� � � �
'

is valid for each model �. Consequently, the equality

min ( , ) min ( , )
q Q q Q

XR q R q
X X� �

�� � (5)

is valid for each �. The symbol QX in (5) designates the set of all strategies of

the form q X YX : � � � that do not use the learning data.

Definition 7. A strategy q X Y ZML: � � � � is called a maximum likelihood

strategy if for each triplet ( , , )x y z it specifies a probability

q y x z q x y zML
X

ML( | , ) ( | ; ( ))� opt � ,

where q R q
X

q Q
X

X X

opt argmin( ) ( , )� ��
�

and � �
�

ML
Zz p z( ) ( ; )�

�
argmax

�
.

In other words, maximum likelihood strategies use the learning data z to estimate

a model � and make a decision that minimizes the expected loss with an assumption

that the estimated model is the true model.

As it has been quoted for Examples 3 and 4, as a rule, maximum likelihood

strategies cannot be represented in the form of a Bayesian strategy

q R qB

q Q

�
� �

�argmin � � �
� �

( ) ( , )
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with fixed weights � �( ) that do not depend on the learning data. In such cases, the

maximum likelihood strategy q ML may be dominated by another strategy of the form

X Y Z� � � � . The so-called minimax strategies, however, are free of this flaw.

Definition 8. Strategy argmin
q Q

R q
� �

max ( , )
�

�
�

is called a minimax strategy.

Theorem 2. No minimax strategy is improper.

Proof. Let us prove an equivalent statement that any improper strategy q 0 is not

minimax. Indeed, as far as q 0 is improper another strategy q1 exists such that

R q R q( , ) ( , )1 0� �� for al l �. Therefore , max ( , ) max ( , )
� �

� �R q R q1 0� and

min max ( , ) max ( , )
q

R q R q
� �

� �� 0 and q 0 is not argmin
q

R qmax ( , )
�

� . �

Though the maximum likelihood strategy may be improper whereas the minimax

strategy is never improper the first one has an essential advantage over the second.

There is a rather wide class of learning data such that the maximum likelihood

strategy is in a sense consistent for any recognized object whereas there is a rather

wide class of recognized objects such that the minimax strategy is not consistent for

any learning data. Let us exactly formulate these statements and prove them.

Let z Z� be a random variable that depends on model � and let for each z Z�
and ��� a probability p zZ ( ; )� be given. We will say that this dependence is

essential if for each two different models � �1 2 a value z� exists such that

p z p zZ Z( ; ) ( ; )� � � �1 2 . Let z z i n Zn
i

n� � �( | , , , )1 2 � be a learning sample,

p z p z
Z

n

i

n

Z in ( ; ) ( ; )� ��

�

���
1

be a probability of the sample and � ML nz( ) �

� argmax
�

�p z
Z

n
n ( ; ) be a maximum likelihood estimation of the model.

Consistency is a generally known property of maximum likelihood estimate. In

the considered case this property can be formulated in a simple way that the

probability of inequality � �ML nz( )  � converges to zero when n increases or,

formally,

lim ( ; )
n

Z

i

n

z Z

ip z
n

err
n�$ ��

��� �
1

0� , (6)

where

Z z Z zerr
n n n ML n� �  �{ }| ( )� � . (7)

Consistency of maximum likelihood estimations is the base for the proof of the

following theorem about consistency of the maximum likelihood strategy.

Theorem 3. Let z be a random variable that takes values from a set Z according

to probability distribution p zZ ( ; )� that essentially depends on �;

let n be a positive integer and z z i n Zn
i

n� � �( | , , , )1 2 � be a random learning

sample with probability distribution p z p z
Z

n

i

n

Z in ( ; ) ( ; )� ��
�
�

1

;

let q X Y Zn
ML n: � � � � be a maximum likelihood strategy for an object

� � � � �X Y p X YXY, , , :� � � and learning data � � � �Z p Zn
Z

n
n, : � � .

Then lim max ( , ) min ( , )
n

n
ML

q Q
R q R q

�$ � �

�
��

� �
��
�

�
� �

�
0.
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Proof. As far as a set � is finite the proof of the theorem is reduced to proof of

the equality

lim ( , ) min ( , )
n

n
ML

q Q
R q R q

�$ �

�
��

� �
��
�� � 0 (8)

for any �. The subsequent proof is based on equality (5), on equalities (6) and (7)

that express consistency of maximum likelihood estimates and on equality

R q p z R q zn
ML

Z
z Z

n

q Q
X

ML n
n

n n X X

( , ) ( ; ) min ( , ( ))� � ��
�

�
� ,

where � �
�

ML n
Z

nz p zn( ) argmax ( ; )�
��

,

that follows from Definition 7. The following chain is valid:

lim ( , ) min ( , ) lim (
n

n
ML

q Q n
n
MLR q R q R q

�$ � �$

�
��

� �
��
� �

��
� � , ) min ( , )� �� �

��
�

�q Q
X

X X

R q

� �
��

�
�$

�
�

�lim ( ; ) min ( , ( )) min
n Z

z Z

n

q Q
X

ML np z R q zn

n
n X X

� �
q Q

X
X X

R q
�

�
��
�( , )�

� �
��

�
�$

�
�

�lim ( ; ) min ( , ( )) min
n Z

z Z

n

q Q
X

ML np z R q zn

n
n X X

� �
q Q

X
X X

R q
�

�
��
�( , )�

� �
��

�
�$

�
�

�lim ( ; ) min ( , ( ))
n Z

z Z

n

q Q
X

ML np z R q zn

n
err
n X X

� � min ( , )
q Q

X X
X X

R q
�

�
��
��

� �
��

� �
�$

�
� �

�lim ( ; ) max max ( , ) m
n Z

z Z

n

y Y y Y
p z w y yn

n
err
n

�
'

in min ( , )
y Y y Y

w y y
� �

� �
��
�

'

� �
��

!
"
#

� �
�$ � � � �
lim max max ( , ) min min (

n y Y y Y y Y y Y
w y y w y

' '
, ) ( ; )� �

��
%
&
'
�

�
�y p z

Z
z Z

n
n

n
err
n

�

� �
��

� � � �
��� � � �

max max ( , ) min min ( , ) li
y Y y Y y Y y Y

w y y w y y
' '

m ( ; )
n Z

z Z

np zn

n
err
n�$

�
� �� 0 .

It follows from the chain that for any � the inequality

lim ( , ) min ( , )
n

n
ML

q Q
R q R q

�$ �

�
��

� �
��
�� � 0

holds. The difference R q R qn
ML

q Q
( , ) min ( , )� ��

�
is never negative and so (8) is

proved. �

So, with the increasing length of the learning sample the risk function of the

maximum likelihood strategy becomes arbitrarily close to the minimum possible risk

function. Minimax strategy does not have this nice property. Moreover, for a certain

class of objects, minimax strategies simply ignore the learning sample, no matter how

long it is.

Theorem 4. Let for an object � � � � �X Y p X YXY, , , :� � � a pair ( , )�� �q X

exists such that
q R q R qX

q Q
X X

X X

�

�

� �

�

�� �argmin argmax( , ), ( , )� � �
� �

.
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Then the inequality

max ( , ) max ( , )
� �

� �
� �

��
� �

R q R q X (9)

is valid for any learning data � � � �Z p ZZ, : � � and any strategy

q X Y Z: � � � � .

Proof. For any strategy q Q� we have the chain

max ( , ) ( , ) min ( , )
�

� � �
�

�

�

�� � �
�

R q R q R q
q Q

� � �
�

� � �

�

�min ( , ) ( , ) max ( , )
q Q

X X X
X X

R q R q R q� � �
� �

. �

The theorem shows that for some objects the minimax approach is particularly

inappropriate because it enforces to ignore any learning data. There is nothing

unusual in conditions of Theorem 4. Examples 1 and 2 in Introduction show just the

cases when these conditions are satisfied.

So, there is a following gap between maximum likelihood and minimax

strategies. The maximum likelihood strategy may be dominated with another strategy.

In this case, it can be improved and, consequently, it is not optimal from any point of

view. However, maximum likelihood strategies are consistent for a wide class

of learning data and so this shortage does not become apparent when a learning

sample of arbitrary size may be obtained. Cases of learning samples of fixed sizes,

especially, short ones form an area of improper application of maximum likelihood

strategies. This area is not covered with minimax strategies. Though minimax

strategies are dominated with no strategy, for a rather wide class of objects minimax

requirement enforces to ignore any learning sample, no matter how long it is.

4. MINIMAX DEVIATION STRATEGIES

This section is aimed at developing a consistent Bayesian strategy that has to fill the

previously mentioned gap between maximum likelihood and minimax strategies.

Definition 9. A strategy argmin
q Q q Q

R q R q
� � �

�
��

� � �
��

max ( , ) min ( , )
�

� �
� '

is called a minimax

deviation strategy.

Minimax deviation strategies do not have the drawback of the minimax

strategies. The following theorem, which is similar to Theorem 3 for maximum

likelihood strategies, is valid for minimax deviation strategies as well.

Theorem 5. Let z be a random variable that takes values from a set Z according

to probability distribution p zZ ( ; )� that essentially depends on � ;

let n be a positive integer and z z i n Zn
i

n� � �( | , , , )1 2 � be a random learning

sample with probability distribution p z p z
Z

n

i

n

Z in ( ; ) ( ; )� ��
�
�

1

;

let q X Y Zn
n� � � �: � be a minimax deviation strategy for an object

� � � � �X Y p X YXY, , , :� � � and learning data � � � �Z p Zn
Z

n
n, : � � .

Then

lim max ( , ) min ( , )
n

n
q Q

R q R q
�$ �

�

�

�
��

� �
��
�

�
� �

�
0. (10)

Proof. The theorem is a straightforward consequence of Definition 9 and

Theorem 3. Let qn
ML be a maximum likelihood strategy for an object

� � � � �X Y p X YXY, , , :� � � and learning data � � � �Z p Zn
Z

n
n, : � � . It

follows from Definition 9 that

ISSN 1019-5262. Ê³áåðíåòèêà òà ñèñòåìíèé àíàë³ç, 2022, òîì 58, ¹ 6 25



max ( , ) min ( , ) max ( ,
� �

� �
�

�

� �

�
��

� �
��
� �

��� �
R q R q R qn

q Q
n
ML � �) min ( , )� �

���q Q
R q

for any n. It follows from Theorem 3 that

lim max ( , ) min ( , )
n

n
q Q

R q R q
�$ �

�

�

�
��

� �
��
�

�
� �

�
lim max ( , ) min ( , )

n
n
ML

q Q
R q R q

�$ � �

�
��

� �
��
�

�
� �

�
0 .

As far as the difference
�
��

�
��

�

�
R q R qn

q Q
( , ) – min ( , )� � is non-negative for any model

the equality (10) is proved. �

Let us note that the proof of Theorem 10 shows not only consistency of the

minimax deviation strategy. It also shows that the minimax deviation strategy

converges to the desired result not slower than the maximum likelihood strategy.

Similarly, one can show that this advantage of the minimax deviation strategy holds

as compared with any consistent strategy and from this point of view it is the best of

all consistent strategies. Nevertheless, the following theorem states that minimax

deviation strategies are also inappropriate for recognizing objects of a certain type.

Theorem 6. Let for an object � � � � �X Y p X Y, , , :� � � a model �� and

a strategy q X
� exist such that

q R q R qX
q Q

X X
q Q

X X

X X X X

�

�

�

�

�� �
��

� �
��

argmin ( , ) min ( , )� �
'

' , (11)

� � �
�

�

�

�

�
� �

��
� �

��
argmax

�
R q R qX X

q Q
X X

X X

( , ) min ( , )
'

' . (12)

Then the inequality

max ( , ) min ( , ) max ( ,
� �

� �
� � �

��
��

� �
��
� �

��� �
R q R q R q

q Q
X X

X X

� �) min ( , )� �
���q Q

X
X X

R q

holds for any learning data � � � �Z p ZZ, : � � and any strategy q Q� .

Proof. In fact, proof of the theorem does not differ from the proof of the
Theorem 4. �

However, the consequences of this theorem for minimax deviation strategies are
not so destructive as those of Theorem 4 for minimax strategies. In fact, conditions

(11) and (12) imply that a strategy q QX X
� � exists that does not use learning

information and assures minimal possible risk for each model,

R q R qX
q Q

X
X X

( , ) min ( , )�

�
� �� � �for all �.

In this case, any learning data are needless and have to be omitted by any strategy.
Evidently, the minimax deviation strategy is not improper and, consequently, is

Bayesian. The following theorem shows how the corresponding weight function has
to be obtained.

Theorem 7. Minimax deviation strategy

q R q R q
q Q q Q

X
X X

�

� � �
� �

��
� �

��
argmin max ( , ) min ( , )

�
� �

�

is a Bayesian strategy argmin
q Q

R q
�

�

�
� � � �
� �

( ) ( , ) with respect to weight function

� � � � � �
� � �

�

� � � � �
� �

��
�� �argmax

T q Q q
R q

X

min ( ) ( , ) ( ) min

� � Q
X

X

R q( , )�
�
��

. (13)
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Proof. Let us define a function F T Q: � � � ,

F q R q R q
q Q

X
X X

( , ) ( ) ( , ) ( ) min ( , )� � � � � � �
� �

� �
� � �
� �
� �

and express q� and �� in terms of F ,

q R q R q
q Q q Q

X
X X

�

� � �
� �

��
� �

��
�argmin max ( , ) min ( , )

�
� �

�

� �
��

� �

� � � �
�argmin

q Q T q Q
XR q R q

X X

max ( ) ( , ) min ( , )
� �

� � � �
� ��

�
� �

argmin
q Q T

F qmax ( , )
�

� ,

� �
�

�

� �
� argmax

T q Q
F qmin ( , ).

The function F is a linear function of q for fixed � and a linear function of � for
fixed q and is defined on the Cartesian product of two closed convex sets T and

Q. In this case a pair ( , )�� �q is a saddle point [1, 2, 4],

min max ( , ) ( , ) max min ( , )
q Q T T q Q

F q F q F q
� �

� �

� �
� �

� �
� � � ,

that implies F q F q
q Q

( , ) min ( , )� �� �

�

�� and

q F q
q Q

�

�

�� argmin ( , )� � �
��

�
�

�

�

�

� �
� �argmin

q Q q Q
XR q R q

X X

� � � � �
� �� �

( ) ( , ) ( ) min ( , )�
�
��
�

�
�

�

�
�argmin

q Q

R q� � �
� �

( ) ( , ). �

In such a way, developing a minimax deviation strategy is reduced to calculating
weights � �( ) of models that maximize concave function (13). General purpose methods of
non-smooth optimization [7] were used to calculate � �( ) in the following experiments.

5. EXPERIMENTS

Minimax deviation strategies have been built for objects considered in
Introduction in Examples 1 and 2.

Minimax deviation strategies have been compared with maximum likelihood and
minimax strategies. Results are presented in Figures 5 and 6 that show risk R q( , )� of
the strategies as a function of a model for several learning sample sizes. Figure 5
relates to Example 1 and Figure 6 to Example 2.
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Fig. 5. Example 1. Probability of making a wrong decision for different sizes n of the learning sample.
The dashed line shows the risk of the minimax deviation strategy
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R q( , )min max �

min ( , )
q
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R q( , )min max �

min ( , )
q

R q �
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q
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q
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CONCLUSIONS

The paper analyzes the problem when for given object

� � � � �X Y p X YXY, , , :� � � ,

loss function w Y Y: � � � , learning data � � � �Z p ZZ, : � � , observed current

signal x and available learning data z a decision y� about the current hidden state y

has to be made. Many commonly used strategies make decisions of the form

y p x y z w y y
y Y

XY

y Y

est�

� �

� ��argmin
'

( , ; ( )) ( , )� , (14)

where �est Z: �� is a reasonable estimation of model � based on learning data z.

It means that the learning data are used to choose a single best model and the
objects are recognized as if this best model equals the true model. The approach
is acceptable when arbitrarily long learning samples are available and estimator

�est Z: �� is consistent. If the learning sample is of limited size then the

approach gives no guarantee for subsequent recognition. Indeed, the approach is
not deduced from any risk-oriented requirement. Reasonable requirements to the
quality of post-learning recognition imply the decision of the form

y p z p x y w y y
y Y

Z XY

y Y

�

� � �

� �� �argmin
'

� � � �
� �

( ) ( ; ) ( , ; ) ( , ) (15)

that differs from (14). Moreover, any decision that differs from (15) can be

replaced with a decision of the form (15) with better recognition quality.

There is nothing in decision (15) that could be treated as selecting some best model

from the model set and so no question stands on what estimator �est Z: �� has to be

used. No model has to be selected. On the contrary, all models should take part with their
weights in making the decision. It is essential that the weights do not depend on learning
data, they are determined by the requirement for the desired strategy in a particular
applied situation. The paper shows a way for computing these weights for minimax
deviation strategy that is appropriate for learning samples of any length and in such a way
fills the gap between maximum likelihood and minimax strategies.

Minimax deviation strategy is not at all a single strategy that is reasonable in
such or other application. Many other strategies are appropriate too, for example,
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Fig. 6. Example 2. Probability of making a wrong decision for different sizes n of the learning sample.
The dashed line shows the risk of the minimax deviation strategy
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q
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strategies of the form

argmin
q Q

R q

� �

�
max

( , ) ( )

( )�

� � �

� ��
(16)

with predefined numbers � �( ) and � �( ) � 0. The minimax strategy is a special case

of (16) when � �( ) � 0, � �( ) �1, and the minimax deviation strategy is a case when

� � �( ) min ( , )�
�q Q

R q , � �( ) �1. A reasonable modification of the minimax deviation

strategy is a case when � �( ) � 0, � � �( ) min ( , )�
�q Q

R q . The numbers � �( ) may be

risks of some other previously developed strategy and this is a case when the

developer wants to check whether another better strategy is possible. At last, numbers

� �( ) may simply be desired values of risk in a particular applied situation.

Requirements of the form (16) together with various loss functions determine various

applied situations. The obtained results show the way to cope with all of them. It has

become quite clear now that each strategy of the form (16) may be represented in the form

(15) because, obviously, none of them are improper. Obtained results imply an unexpected

conclusion that learning data take part in the decision (15) in a unified form that depends

neither on the applied situation nor on the object under ecognition, no question stands

anymore on how the learning data have to influence the decision about the current state

when the current signal is observed. Learning data influence the decision via and only via

probabilities p zZ ( ; )� , not via a choice of some best model from the model set.
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Ì.². Øëåç³íãåð, ª.Â. Âîäîëàçñüêèé
Ì²Í²ÌÀÊÑÍ² ÑÒÐÀÒÅÃ²¯ ÌÀØÈÍÍÎÃÎ ÍÀÂ×ÀÍÍß ² ÐÎÇÏ²ÇÍÀÂÀÍÍß ÎÁÐÀÇ²Â
ÍÀ ÎÑÍÎÂ² ÊÎÐÎÒÊÈÕ ÍÀÂ×ÀËÜÍÈÕ ÂÈÁ²ÐÎÊ

Àíîòàö³ÿ. Âèêîíàíî àíàë³ç çàäà÷ ðîçï³çíàâàííÿ îáðàç³â ³ ìàøèííîãî íàâ÷àííÿ ó âèïàäêó,
êîëè ÿê³ñòü ñòðàòåã³é äëÿ ¿õíüîãî ðîçâ’ÿçàííÿ âèçíà÷àºòüñÿ ðèçèêîì ï³ä ÷àñ ¿õíüîãî âèêî-
ðèñòàííÿ. Ñïèðàþ÷èñü íà ïîíÿòòÿ áàãàòîêðèòåð³éíî¿ îïòèì³çàö³¿, âèçíà÷åíî êëàñ ñòðà-
òåã³é, íåïðèäàòíèõ äëÿ ðîçâ’ÿçàííÿ çàäà÷, ³ âèâåäåíî çàãàëüíèé âèãëÿä óñ³õ ³íøèõ ñòðà-
òåã³é. Ïîêàçàíî, ùî çàñòîñóâàííÿ îêðåìèõ øèðîêîâæèâàíèõ ï³äõîä³â ïðèçâîäèòü äî íå-
ïðèäàòíèõ ó âèçíà÷åíîìó ñåíñ³ ñòðàòåã³é. Çîêðåìà, öå ñòðàòåã³¿, ùî ´ðóíòóþòüñÿ íà
íàéâ³ðîã³äí³øîìó îö³íþâàíí³, îñîáëèâî ó ðàç³ âèêîðèñòàííÿ íàâ÷àëüíèõ âèá³ðîê ô³êñîâà-
íîãî ³ ìàëîãî îáñÿãó. Ñôîðìóëüîâàíî çàäà÷³ ðîçï³çíàâàííÿ ³ íàâ÷àííÿ â ºäèí³é óí³ô³êî-
âàí³é ôîðì³, ÿêà îõîïëþº óâåñü ñïåêòð îáñÿã³â íàâ÷àëüíèõ âèá³ðîê, ùî âêëþ÷àº âèá³ðêè
íóëüîâîãî îáñÿãó. Äîâåäåíî, ùî ðîçâ’ÿçàííÿ çàäà÷ ó íàâåäåíîìó ôîðìóëþâàíí³ âèêëþ÷àº
îòðèìàííÿ íåïðèäàòíî¿ ñòðàòåã³¿. Ñôîðìóëüîâàíî ïîíÿòòÿ ñòðàòåã³é ðîçï³çíàâàííÿ ³ íà-
â÷àííÿ, ùî ì³í³ì³çóþòü ìàêñèìàëüíå â³äõèëåííÿ äîñÿãíóòî¿ ÿêîñò³ â³ä áàæàíî¿, ÿêà, ìîæ-
ëèâî, º íåäîñÿæíîþ. Íàâåäåíî ïðèêëàäè ïîáóäîâè òàêèõ ñòðàòåã³é òà ¿õíüîãî ïîð³âíÿííÿ
ç øèðîêîâæèâàíèìè ìåòîäàìè, ùî ´ðóíòóþòüñÿ íà íàéâ³ðîã³äí³øîìó îö³íþâàíí³.

Êëþ÷îâ³ ñëîâà: ðîçï³çíàâàííÿ îáðàç³â, ìàøèíííå íàâ÷àííÿ, êîðîòê³ íàâ÷àëüí³ âèá³ðêè.
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