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MINIMAX DEVIATION STRATEGIES FOR MACHINE LEARNING
AND RECOGNITION WITH SHORT LEARNING SAMPLES

Abstract. The article analyses risk-oriented formulation of pattern recognition and machine
learning problems. Based on arguments from multicriteria optimization, a class of improper
strategies is defined that are dominated by some other strategy. A general form of strategies
that are not improper is derived. It is shown that some widely used approaches are improper in
the defined sense, including the maximum likelihood estimation approach. This drawback is
especially apparent when dealing with short learning samples of fixed length. A unified
formulation of pattern recognition and machine learning problems is presented that embraces
the whole range of sizes of the learning sample, including zero size. It is proven that solutions
to problems in the presented formulation are not improper. The concept of minimax deviation
recognition and learning is formulated, several examples of its implementation are presented
and compared with the widely used methods based on the maximal likelihood estimation.

Keywords: pattern recognition, machine learning, short learning sample.

INTRODUCTION

The short learning sample problem has been around in machine learning under
different names during its whole life. The learning sample is used to compensate
for the lack of knowledge about the recognized object when its statistical model is
not completely known. Naturally, the longer the learning sample, the better the
subsequent recognition. However, when the learning sample becomes too small
(2, 3, 5 elements) the effect of small samples becomes evident. In spite of the
fact that any learning sample (even a very small one) provides some additional
information about the object, it may be better to ignore the learning sample than
to utilize it with the commonly used methods.

Example 1. Let us consider an object that can exist in one of two random states
y=1 and y=2 with equal probabilities. In each state the object generates two
independent Gaussian random signals x| and x, with variances equal 1. Mean values
of signals depend on the state as it is
shown in Fig. 1. In the first state, the R

- Py, x| y=1)
mean value is (2,0). In the second /
state, the mean value depends on an |
unknown parameter 6 and is (0, 0). |
Even when no learning sample is given V=1 PO % | 7=2)

a minimax strategy can be used to |2 ——*—_—Z——I———v —————————
make a decision about the state y. e / ’_\

The minimax strategy ignores the |

second signal and makes decision 0 \ e
y* =1 when x1>1and decision Y =2 \;_,/
when x| <1. 0

Now let us assume that there is
. Fig. I. Example 1: (x;,x,) € R? — signal, y € {l, 2} —
a sample of signals generated by e
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Fig. 2. Probability of a wrong decision (risk) for different sizes n of the learning sample

an object in the second state but with higher variance 16. A maximum likelihood
strategy estimates the unknown parameter 6 and then makes a decision about y as if
the estimated value of the parameter is its true value. Figure 2 shows how the
probability of a wrong decision (called the risk) depends on parameter 6 for different
sizes of the learning sample. In Fig. 2, as well as in all subsequent figures, the curve

R(g™ML . 0) is the risk of the maximum likelihood strategy, the curve R (g% 0) is
the risk of the minimax strategy and the curve min R(g, 0) is the minimum possible
q
risk for each model. If the learning sample is sufficiently long, the risk of the
maximum likelihood strategy may become arbitrarily close to the minimum possible
risk. Naturally, when the length of the sample decreases the risk becomes worse.
Furthermore, when it becomes as small as 3 or 2 elements the risk of the maximum
likelihood strategy becomes worse than the risk of the minimax strategy that uses
neither the learning sample nor the signal x, at all. Hence, it is better to ignore
available additional data about the recognized object than to try to make use of it in
a conventional way. This demonstrates a serious theoretical flaw of commonly used
methods, and definitely not that short samples are useless. Any learning sample, no
matter how long or short it is, provides some, maybe not a lot information about the
recognized object and a reasonable method has to use it. End of Example.
Example 2. This is a simple example that has been used by H.Robbins in his
seminal article [1] where he initiated the empirical Bayesian approach and explained
its main idea. An object can be in one of two possible states y=1and y=2. In each
state, the object generates a univariate Gaussian signal x with variance 1. The mean
value of the generated signal depends on the state y so that

C(x+D)?

b I C(x-D?
p(xly—l)—meXp[ 5 ] plx|y=2) meXp[ 5 J

Only a priori probabilities of states are unknown and O is the probability of the
first state so that p(y=1)=60 and p(y=2)=1-0. Figure 3 illustrates these data.
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A minimax strategy for such an
incomplete statistical model makes

px[y=1) p(x|y=2)

decision y* based on the sign of the

observed signal and ensures the
probability of correct recognition
0.84 independently of a priori
probabilities of states. -1 =

Let not only a single object, but v
a collection of mutually independent
objects be available for recognition.
Each object is in its own hidden state
and is presented with its own signal. Let us also assume that the decision about each
object’s state does not have to be made immediately when the object is observed and
can be postponed until the whole collection is observed. In this case, maximum
likelihood estimations of a priori probabilities of states can be computed and then
each object of the collection is recognized as if the estimated values of probabilities
were the true values. When the presented collection is sufficiently long the probability
of a wrong decision can be made as close to the minimum as possible (Fig. 4).
However, when the collection is too short, the probability of a wrong decision can be
much worse than that of the minimax strategy. End of Example.

-
=

<
Il
[

Fig. 3. Example 2: x € R — signal, y € {l, 2} — state

The considered examples lead to a difficult and so far an unanswered question.
What should be done when a fixed sample of 2-3 elements is given and no additional
elements can be obtained? Is it really the best way to just ignore these data or is it
possible to make use of them? We want to fill up this gap between maximum
likelihood and minimax strategies and develop a strategy that covers the whole range
of learning samples lengths including zero length. However, this gap, and it is infact
a gap, shows a theoretical imperfection of the commonly used learning procedures,
namely, of maximum likelihood learning [2, 3]. The short sample problem in whole
follows from the fact that maximum likelihood learning as well as many other
learning procedures have not been deduced from any explicit risk-oriented
requirement to the quality of post-learning recognition. We will formulate such
risk-oriented requirements and will see what type of learning procedures follow.

R(q, ) R(q, 0)
R(g"",0)
—
//;e(qmin max 0)

R(¢M™ 6)

R(g™™ ™, 9) !

e

/\ /
min R(q, 6) inR(q, 0
M N n;m (q,0)
0 0.5 1 0 0 0.5 160

n=1 n=2

R(q, 0) R(q, 0)

ML
R(q™ 0) R(gME 6)

min R(g, 6) \ min R(q, 0)

n=>5 n=10

Fig. 4. Probability of a wrong decision (risk) for different sizes n of the learning sample
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1. BASIC DEFINITIONS

Definition 1. An object is represented with a tuple
(X,Y,0,pyy : X xY xO®—>R)

where X is a finite set of signal values x € X; ¥ is a finite set of states y€Y; ® is
a finite set of models 6 € ®; pyy (x, y;0) is a probability of a pair (x e X, yeY)
for a model 6 0.

A signal x is an observable parameter of recognized object whereas a state yis its
hidden parameter. A pair (x, y) is random and for each pair (x e X, yeY) its
probability pyy (x, y; 0) exists. However, this probability is not known because it
depends on an unknown model 6. As for the model 6, it is not random, it takes a fixed
but unknown value. Only the set ® is known that the value 6 belongs to.

Let z be some random data that depend on a model 6 and take values from
a finite set Z. The data is specified with a tuple (Z, p,:Z x ® - R), where py (z;0)
is a probability of data z e€Z for model 0 €®.

Definition 2. Random data (Z, p,:Z x ® — R) that depends on a model is called
learning data for an object (X,Y,0, pyy: X xY x® > R) if pyyy (x,,2;0)=
=pyy (x,1;0)- py(z;0) for all xeX, yeY, zeZ, 0€0O.

A learning sample ((x;,»;)|i=12,...,n) used for supervised learning is a
special case of learning data when

n
Z=(XxY)" and pZ(z;G)zanY(xi,yl-;G).
i=1

A learning sample (x;|i=12,...,n) for unsupervised learning is another special
case of learning data when

n
Z=X" and pZ(Z;G)ZH Zny(xi,y;H)'
i=1 ye¥

Any expert knowledge about the true model is also learning data. One can even
consider the case when |Z|=1 and therefore p,(z;0)=1, which is equivalent to
the absence of any learning data at all. We do not restrict learning data in any
way except that for any fixed model the learning data z depend neither on the
current signal x nor on the current state y so that

Pxyz (X, 1, 2;0)=pyy (x, ¥;0)- py(z;0) for all xeX, yeY, zeZ, 0€0.

Definition 3. A non-negative function ¢ : X x Y x Z — R is called a strategy if
Zq(y|x,z):1 for all xelX, zeZ

Yl A value q(y|x, z) of astrategy g : X x ¥ x Z — R is a probability of a randomized

decision that the current state of an object is y, given the current observed signal x and
the available learning data z. The set of all strategies g : X x Y x Z — R is denoted Q.
Letw:Y x Y be a loss function whose value w(y, )') is the loss of a decision )’
when the true state is y.
Definition 4. The risk R (g, 0) of a strategy ¢ on a model 6 is the expected loss

R(q,0)=>. > D pxy G, n0)ps(z0)> gy |x, )0 y).

zeZ xeX yeY y'eY

Recall that throughout the paper the sets X, ¥, Z, and ® are assumed to be finite.
This allows a much more transparent formulation of the main results. Allowing some
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of the sets to be infinite would require finer mathematical tools and the results might
be obscured by unnecessary technical details.

2. IMPROPER AND BAYESIAN STRATEGIES

One can see that the risk of a strategy depends not only on the strategy itself but
also on the model that the strategy is applied to. Therefore, in a general case, it is
not possible to prefer some strategy ¢; to another strategy ¢,. The risk of ¢; may
be better than the risk of g, on some models and worse on others. However, it is
possible to prefer strategy g, to strategy ¢; if the risk of g is greater than the
risk of g, on all models. In this case, we will say that ¢, dominates ¢q; or q; is
dominated by ¢,.

Definition 5. A strategy qo is called improper if a strategy ¢” exists such that

R(¢° 6)>R(g*,6) for all HcO.

We want to exclude all improper strategies from consideration and derive a common
form of all the rest. Let 7" denote the set of all non-negative functions 7 : ® — R such that
Z 7(0) =1. Functions of such type will be referred to as weight functions.

0c®
Definition 6. A strategy ¢~ is called Bayesian if there exists a weight function

7 eT such that

q’k = argmin Z‘L’(@)R(q, 0).
40 9eO

Theorem 1. Each strategy ¢ 0 ¢ Q is either Bayesian or improper, but never both.

Proof. For a given strategy qo let us define a function FF:TxQ —> R,

F(t,q)= Y 1(O)[R(q,0)~R(q",0)].
0c®
According to Definition 4, for any fixed 6 the risk R(g, ) is a linear function of
probabilities g(y|x, z). Consequently, for any fixed 7, the function F is a linear
function of probabilities ¢(y|x, z) as well. Similarly, the function F is a linear
function of weights 7(0) for any fixed strategy g. The set Q of strategies and the set T
of weight functions are both closed convex sets. Consequently, due to the known

duality theorem [4-6] function F has a saddle point (z* €T, ¢* €Q) such that

max min F (t,q) = F(t", ¢* ) = min max F (, q),

tel’ qeQ qeQ tel
where

q" =argminmax F(z,q), T° =argmax min F (z, q).
qeQ Tl el 99

It is obvious that F(z, qo) =0 for any 7 €T. Therefore, the inequality min F' (7, ¢g) <0
q<Q
holds for every 7 €T and, consequently,

max min F (7, ¢)=F(t",¢" ) <0.
tel qeQ
Therefore, there are two mutually exclusive cases: either F(z*,¢")<0 or

F(t*,¢g")=0. In such way, the proof of the theorem is reduced to proving the
following four propositions.
Proposition 1. If the strategy qo is Bayesian then F(r",¢")=0.

Proposition 2. If F(z%,¢")=0 then the strategy qo is Bayesian.
Proposition 3. If the strategy qo is improper then F(r*,¢")<O0.
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Proposition 4. If F(t",¢" )<0 then the strategy qo is improper.
Proof of Proposition 1. If the strategy qO is Bayesian then according to

0

Definition 6 a weight function 7~ exists such that inequality

>R, 0= D " (OR(G,0)

=0 0O

is valid for all ¢ €Q. Consequently, for all ¢ eQ the chain

0< Y 2% O[R(q, 9)—R(q°,0>]=F(r°,q)sm;F(uq)
0c® Te

is also valid. Since all numbers max F (t, ¢), ¢ €Q, are not negative the least of
them is also not negative and el

min max F(t,¢)=F(t",¢")>0.
qe0 tel
It follows from this inequality that F(r",¢")=0 because a case F(z",q" ) >0 is
impossible.
Proof of Proposition 2. Let F(z*,q" )=0 then

0=F(t",¢")=maxmin F (7, q) =min F (t",q) =
tel’ geQ q<Q

—min 37" (O)[R(g,0) - R(¢°,0)]=
99 peo

= min {Zr* (O)R(q, 9)} - Y7 O)R(¢",0).

q<Q 0O 0O

It implies the equality

min >"7* (O)R(g,0)= D" (OR(¢",6)

9 9o 0O

and therefore, the equality

¢ =argmin 3 7" ()R (4. 0),
q€Q0  0e®
which means that qo is Bayesian according to Definition 6.
Proof of Proposition 3. If the strategy ¢ 0 s improper then according to Definition
5 a strategy ql exists such that inequalities R(ql, )< R(q 0 0) hold for all 6. The set of

models is finite and therefore, a value €< 0 exists such that for any 6 inequality
R(ql, 0)-R(q 0 0) < ¢ holds and the chain

0>e> > 2(O)[R(g",0) ~R(¢",0)]=F(r,q") > min F(z, q)
0c® 9<0

is valid for any 7 7. Since all numbers min F'(z, ¢), T €T, are not greater than ¢
q€Q
the greatest of them is also not greater than ¢ and

max min F (1, ¢)=F (t",q" )< e<0.
tel qeQ
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Proof of Proposition 4. Let F(z*,¢" )< 0. In this case,

F(r",q" )= min max F (7, q) =max F (1, q" ) =
qeQ tel tel

=max Y 7(0)[R(q", 0) - R(¢°, 6)]=max[R(¢",0) - R(¢°, 0)]
tel ey 0cO
and therefore

max [R(¢",0) —R(¢°, 0)]< 0.
0e®

Consequently, the inequality R(g",0)< R(qo, 0) holds for all models 0 €® and

qo is improper according to Definition 5. O

The theorem gives good reasons to reappraise a lot of well-known methods that
are commonly used as something self-evident. Let us illustrate this criticism with two
simple examples. The first example considers a certain method of recognition without
learning and the second relates to maximum likelihood learning. In both examples,
the loss function is . ,

, 0, if y=y/,
w(y, )=

Example 3. Let x be an image of a letter, y be its name and 6 be a position of

L, if y= )"

the letter in a field of vision. Let the function pyy: X xY x ® — R be constructively
defined so that probability pyy (x, y; 6) can be calculated for each triplet x, y, 6. In
this case, when an image x with an unknown position 6 is observed the decision y* (x)
about the name of the letter has to be of the form

y* (x) =argmax D 7(0) pyy (x,y;6). (1)
ye¥  0e®

Theorem 1 reveals a certain weakness of the commonly used form

y* (x) = argmax max p yy (x, y; 6). ()
ye¥ 0c®

The strategy (2) could be represented in the form (1) if the weights 7(0) in (1)
could be chosen individually for each observation x € X. However, each Bayesian
strategy is specified with its own weight function 7:® — R so that weights are
assigned to elements of the set ®, not of the set ® x X'. As a rule, the strategy (2)
cannot be represented in the form (1) with fixed weights 7(6) that do not depend
on x. It means that the strategy (2) is not Bayesian and is dominated by some
other strategy that for each position of the letter recognizes its name better than

strategy (2). End of Example.
Example 4. Let the sets X, ¥ and © be specified for the recognized object as
well as a function pyy: X xY x ® > R. Let the learning information be a random

n
learning sample z=((x;, y;)|i=12,...,n) such that p,(z;0) =H Pxy (x;,5:50).
i=1
Then the decision y* about the current state o based on the current signal x
and available learning sample z has to be of the form

n
y* =argmax Y 1(0) [ | p(x;, y;:0) 3)
WeY 0ed i=0

for some fixed 7 that does not depend on z. One can see that the commonly used
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maximum likelihood strategy

¥ =argmax p(xg, o; 0 (2)), )
Yoe¥
n
0" (z) =argmax [ | p(x;, y;:0)
0O =1

can almost never be represented in the form (3) with constant weights and therefore
is not Bayesian. It means that some other strategy exists that makes a decision
about the current state based both on current signal and learning information and
for each model makes it better than strategy (4). End of Example.

3. A GAP BETWEEN MAXIMUM LIKELIHOOD AND MINIMAX STRATEGIES

We consider maximum likelihood and minimax strategies and specify a gap

between them. Let us define a strategy ¢ °"'(6)=argmin R(q, 0) for each 6 c®
q<Q

OPl(y|x, z;0) for each triplet (x, y, z). The strategy

that assigns a probability ¢

q(’pt (0) is the best possible strategy that should be used if a true model was

known. Since the model is known no learning data are needed. For any fixed
model 6 a strategy ¢g(0): X xY xZ—>R can be replaced with a strategy
qdx (0): X xY >R with the same risk. Probabilities ¢(y|x, z;0) have to be
transformed into probabilities g y (1 |x;0) according to expression

qx (V1x:0) =Y p7(z:0)q(y|x, z;6)

. zeZ
and so the chain

R(q.0)=Y D > pxy(x y:0)p7(z:0) Y q(y|x, z0)w(y )=

zeZ xeX yeY y'eY

= D oy (x5, 3:0) D 03, Y) Y. pr(z:0)q() | x, 2;0) =

xeX yeY y'eY zeZ
=2 D pxyx1:0) X qx (V] x:0)w(y, y)=R(gyx.0)

xeX yeY y'eY
is valid for each model 6. Consequently, the equality

min R(g, 0) = min R(qy,6) %)
q€0 Ixx
is valid for each 6. The symbol Oy in (5) designates the set of all strategies of
the form ¢ y:X xY — R that do not use the learning data.
Definition 7. A strategy qML:X xY xZ — R is called a maximum likelihood

strategy if for each triplet (x, y, z) it specifies a probability

g™ (ylx, 2)=q ¥ (x| 30" (2)),
where q;’(pt (0) = argmin R(q ,0) and 0L (z) = argmax py (z; 0).
qx <0y 0c®
In other words, maximum likelihood strategies use the learning data z to estimate
a model 0 and make a decision that minimizes the expected loss with an assumption
that the estimated model is the true model.
As it has been quoted for Examples 3 and 4, as a rule, maximum likelihood
strategies cannot be represented in the form of a Bayesian strategy
¢” =argmin Y 7()R(g.6)
q9€0  6cO
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with fixed weights 7(60) that do not depend on the learning data. In such cases, the
maximum likelihood strategy ¢ ML may be dominated by another strategy of the form

X xY xZ — R. The so-called minimax strategies, however, are free of this flaw.

Definition 8. Strategy argmin max R(q,0) is called a minimax strategy.
qgeQ 60O

Theorem 2. No minimax strategy is improper.
Proof. Let us prove an equivalent statement that any improper strategy ¢ % is not

minimax. Indeed, as far as qo is improper another strategy ql exists such that
R(q1,0)<R(qO,9) for all 6. Therefore, maxR(q1,9)< maxR(qO,G) and
0 0

mqin mng(q, 0)< mng(qO, 0) and qO is not argmin mng(q, 0). ]
q

Though the maximum likelihood strategy may be improper whereas the minimax
strategy is never improper the first one has an essential advantage over the second.
There is a rather wide class of learning data such that the maximum likelihood
strategy is in a sense consistent for any recognized object whereas there is a rather
wide class of recognized objects such that the minimax strategy is not consistent for
any learning data. Let us exactly formulate these statements and prove them.

Let z €Z be a random variable that depends on model 6 and let for each z €Z
and 0 €® a probability p,(z;0) be given. We will say that this dependence is

essential if for each two different models 6, #6, a value z* exists such that

pr(25:0)# ps(275:05). Let 2" =(z;]i=1,2,...,n)€Z" be a learning sample,

n
Pyn (Z”;Q*):H p7(z;;0%) be a probability of the sample and oML (") =
i=1

= argmax p., (z";0) be a maximum likelihood estimation of the model.
0

Consistency is a generally known property of maximum likelihood estimate. In
the considered case this property can be formulated in a simple way that the

probability of inequality OML(Z")¢9* converges to zero when n increases or,
formally,

n
lim > []pz(z:6")=0, (6)
n—>% n_n _
z EZerr i=1
where
Zn =" ez oM (z") 20" . (7)
Consistency of maximum likelihood estimations is the base for the proof of the
following theorem about consistency of the maximum likelihood strategy.
Theorem 3. Let z be a random variable that takes values from a set Z according
to probability distribution p, (z;6) that essentially depends on 0,

let n be a positive integer and z" = (z;|i=1,2,...,n) € Z" be a random learning

n
sample with probability distribution pZ,,(z”;H)zn pz(z;50);
i=1
let q,ﬁm X xYxZ" >R be a maximum likelihood strategy for an object
(X,Y,0, pyy: X x¥ x®—>R) and learning data (Z", p_.:Z" x ® > R).
Then lim max [R(q,j,m,@)—minR(q,O)}:O.
€0

n—wo He® q
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Proof. As far as a set O is finite the proof of the theorem is reduced to proof of
the equality

lim [R(q,i‘“,e) ~ min R(g, 0)}=o ®)
n—0 qe0

for any 6. The subsequent proof is based on equality (5), on equalities (6) and (7)
that express consistency of maximum likelihood estimates and on equality

R(g,".0)= Y p,u(" :6) min R(qx,0M (")),

"ez” X

where OML(Z") = argmax p._, (z";0),
0c®

that follows from Definition 7. The following chain is valid:

lim [R(q ML gy _ mlnR(q,O)}— lim [R(q ML ) — min R(qX,H)}:

n—>0 qe0 n—>0 qy<0y

= lim |: Z pZ”(Z ;6) min R(qX,QML(Zn)) min R(qX,Q)}Z

nool g qx<€0x qx<0x

lim Z pZ,,(z 0)[ min R(qX,GML(z )) — min R(qX,G)}

n—o ez" qx<Qy qx<€Qy

=lim Y p.(" 0)[ min R(qy,0M(z")) - min RX(qX,G)}

=% n_zn dx€x qx€lx
err

< lim Z pa(2";0) maxmaxw(y,y) mmmmw(y,y)
z yer y'ey yer y'eY

n— ez

= lim {[maxmaxw(y,y) rm;lmmw(y,y)} > pZ”(Zn;e)}:
Yer ye

n—>00 yel y'eY Sezh

[maxmaxw(y,y) mmmmw(y,y)} lim z pZ”(Z ;0)=0.
yeY y'eY yeY y'eY n—»00 egn

err

It follows from the chain that for any 6 the inequality

lim [R(anL, 0) — min R(q, 0)}30
0

n—»w q

holds. The difference R(q,jl‘/lL,G)—minR(q,@) is never negative and so (8) is
q<Q

proved. U

So, with the increasing length of the learning sample the risk function of the
maximum likelihood strategy becomes arbitrarily close to the minimum possible risk
function. Minimax strategy does not have this nice property. Moreover, for a certain
class of objects, minimax strategies simply ignore the learning sample, no matter how
long it is.

Theorem 4. Let for an object (X, Y, 0, pyy: X xY x ® > R) a pair (6", ¢y )
exists such that

q’y =argminR(qy,0"), 6 =argmax R(qy ,0).
qx €0y 0O
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Then the inequality
max R (g, 6) > max R(q'y ,6) )
0O 50
is valid for any learning data (Z, p,:Zx®—>R) and any strategy
q: X xYxZ—>R.
Proof. For any strategy ¢ €Q we have the chain

max R(q,0) = R(q, 0" )= minR(q, 0" ) =
=0 q€0

= min R(qy,0")=R(qy.0")=maxR(qy,0). O
qx<Qx 0O

The theorem shows that for some objects the minimax approach is particularly
inappropriate because it enforces to ignore any learning data. There is nothing
unusual in conditions of Theorem 4. Examples 1 and 2 in Introduction show just the
cases when these conditions are satisfied.

So, there is a following gap between maximum likelihood and minimax
strategies. The maximum likelihood strategy may be dominated with another strategy.
In this case, it can be improved and, consequently, it is not optimal from any point of
view. However, maximum likelihood strategies are consistent for a wide class
of learning data and so this shortage does not become apparent when a learning
sample of arbitrary size may be obtained. Cases of learning samples of fixed sizes,
especially, short ones form an area of improper application of maximum likelihood
strategies. This area is not covered with minimax strategies. Though minimax
strategies are dominated with no strategy, for a rather wide class of objects minimax
requirement enforces to ignore any learning sample, no matter how long it is.

4. MINIMAX DEVIATION STRATEGIES

This section is aimed at developing a consistent Bayesian strategy that has to fill the
previously mentioned gap between maximum likelihood and minimax strategies.
Definition 9. A strategy argmin max[;?(q, 0) —min R(q',0) Tis called a minimax

deviation strategy. qeQ VS q'<Q

Minimax deviation strategies do not have the drawback of the minimax
strategies. The following theorem, which is similar to Theorem 3 for maximum
likelihood strategies, is valid for minimax deviation strategies as well.

Theorem 5. Let z be a random variable that takes values from a set Z according
to probability distribution p, (z;0) that essentially depends on 6;

let n be a positive integer and z" = (z;|i=1,2,...,n) € Z" be a random learning
n
sample with probability distribution Pyn (z";0) :H Pz (z;;0);
i=l
let ¢ ,:XxYxZ" >R be a minimax deviation strategy for an object
(X,Y,0, pyy: X xY x®—R) and learning data (Z",pz,l:Z" x®—>R).
Then
lim max {R(q:,e) — min R(q,@)}zo. (10)
0

n—w 0e® qe<

Proof. The theorem is a straightforward consequence of Definition 9 and

Theorem 3. Let q,jlm be a maximum likelihood strategy for an object

(X,Y,0,pyy: X xY x®—>R) and learning data (Z",pzn:Z" x@—>R). It
follows from Definition 9 that
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max[R(qn,G) min R (g, 0)}<ma>{R(qn ,0)— rmnR(q,H)}
0O qe0 0O q€0

for any n. It follows from Theorem 3 that

lim max{R(qn,G) rnlnR(q,G)}<hm max [R(qn ,0)— mmR(q,G)}
q€0 0o q<0

n—ow He® n—»o0

As far as the difference {R(q:;,e)—minR (g, 9)} is non-negative for any model
q€0
the equality (10) is proved. 0

Let us note that the proof of Theorem 10 shows not only consistency of the

minimax deviation strategy. It also shows that the minimax deviation strategy
converges to the desired result not slower than the maximum likelihood strategy.
Similarly, one can show that this advantage of the minimax deviation strategy holds
as compared with any consistent strategy and from this point of view it is the best of
all consistent strategies. Nevertheless, the following theorem states that minimax
deviation strategies are also inappropriate for recognizing objects of a certain type.

Theorem 6. Let for an object (X, Y, 0, p: X x¥ x® — R) a model 0" and
a strategy ¢y exist such that

Iy —afgmln{RX(QX,@ )— min Ry (g6 )} (11)
gye0y 9y 0x

6" = argmax liRX (qx.0)— min Ry (qy-, 9)} (12)
0ec® qx €x

Then the inequality

I;laé){R(q,G)— min R(qx,e)}glax[ze(qx,e)— min R(qy, 0)}

qx<€Yx qx<lx

holds for any learning data (Z, p,:Zx® — R) and any strategy g €Q.

Proof. In fact, proof of the theorem does not differ from the proof of the
Theorem 4. ]

However, the consequences of this theorem for minimax deviation strategies are
not so destructive as those of Theorem 4 for minimax strategies. In fact, conditions
(11) and (12) imply that a strategy ¢’y €Qy exists that does not use learning
information and assures minimal possible risk for each model,

R(q’y,0)= min R(qy,0) for all 6 €©®.
qx <0y

In this case, any learning data are needless and have to be omitted by any strategy.
Evidently, the minimax deviation strategy is not improper and, consequently, is
Bayesian. The following theorem shows how the corresponding weight function has
to be obtained.
Theorem 7. Minimax deviation strategy

q" :argmjnmax[R(q,H)— min R(qX,Q)}
qeQ 0O qx€x

is a Bayesian strategy argmin ZT* (0)R(q,6) with respect to weight function

qe0 0O
T :argmax[min > 7(0)R(g,6) - D 7(f) min R(qX,G)] (13)
tel 92 9ed 0c® qx€0x
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Proof. Let us define a function F:7 xQ — R,

F(z,q9)= > 1(O)R(g,0)— > 7(f) min R(qy,06)
i , 0<® pe®  dx<Cx
and express ¢ and T in terms of F,

q" :argmjnmax[R(q,G)— min R(qX,O)}z
qeQ  0€O qx<Qx

= argmin max Zr(@){R(q, 0)— min R(qy,0) :l = argmin max F'(t, q),
90 < geo q9x<0x qeQ el

7" = argmax min F (7, q).
tel  qe0

The function F' is a linear function of ¢ for fixed t and a linear function of 7 for
fixed ¢ and is defined on the Cartesian product of two closed convex sets 7 and

0. In this case a pair (z°, ¢*) is a saddle point [, 2, 4],

min max F(r,q)=F (", ¢" ) = max min F (, q),
qe0 tel el geQ

that implies F(z*,¢" )=min F(t*,q) and
q€0

q" =argmin F(t",¢) = argmin liZT* (O)R(g,0)— D 7" (6) min R(qX,G)}:

qe0 q€0 0O 0c® ax<Qx
=argmin ) 7" (0)R(q,6). O
q€0 6O

In such a way, developing a minimax deviation strategy is reduced to calculating
weights 7(8) of models that maximize concave function (13). General purpose methods of
non-smooth optimization [7] were used to calculate 7(6) in the following experiments.

5. EXPERIMENTS

Minimax deviation strategies have been built for objects considered in
Introduction in Examples 1 and 2.

Minimax deviation strategies have been compared with maximum likelihood and
minimax strategies. Results are presented in Figures 5 and 6 that show risk R (g, 0) of
the strategies as a function of a model for several learning sample sizes. Figure 5
relates to Example 1 and Figure 6 to Example 2.

R(q, 0) R(gM- 0) R(q, 0) R(gM 0)
/////‘/k (qmjn max, 0) R(q min max) 0)
P NN ‘ H;inR(qa9) T ==C min R(q, 6)
o e - SN p
-6 -3 0 3 6 0 -6 -3 0 3 6 6
n=1 n=2
R(q, 0) R(gM ) R(q, 0) R(gM 0)
R(g™™ ™, 0) R(g™™ ™ g)
T min R(q, 0) TS min R(g, 0)
L= SN q P NN q
-6 -3 0 3 6 0 -6 -3 0 3 6 0
n=3 n=10

Fig. 5. Example 1. Probability of making a wrong decision for different sizes n of the learning sample.
The dashed line shows the risk of the minimax deviation strategy
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R(q, 0) R(q, 0)

Rg™.0) R(g"™,0)

R(qmin max, 0) R(qmin max )

o % minR(g, 6) — " minR(g, 0

2 M 7 X\ minkG@0)

0 0.5 1 6 0 0.5 1 6
n=1 n=2
R(q, 0) R(q. 6)
R(gME ) R(g"™" 0)
"
////// R( qmin max 0) /m

/ .
/, SN min R(g, 6) == = min R(g, 6)
= N q 2 D A

Fig. 6. Example 2. Probability of making a wrong decision for different sizes n of the learning sample.
The dashed line shows the risk of the minimax deviation strategy

CONCLUSIONS
The paper analyzes the problem when for given object
(X,Y,0, pyy: X x¥ xO>R),

loss function w:Y xY — R, learning data (Z, p,:Zx® — R), observed current
signal x and available learning data z a decision y* about the current hidden state y
has to be made. Many commonly used strategies make decisions of the form

y* =argmin Y pyy (x, y; 0" (2)w(3, ), (14)

y'eY  yey

where 6°’:Z — © is a reasonable estimation of model 0 based on learning data z.
It means that the learning data are used to choose a single best model and the
objects are recognized as if this best model equals the true model. The approach
is acceptable when arbitrarily long learning samples are available and estimator
0%':Z - ©® is consistent. If the learning sample is of limited size then the
approach gives no guarantee for subsequent recognition. Indeed, the approach is

not deduced from any risk-oriented requirement. Reasonable requirements to the
quality of post-learning recognition imply the decision of the form

y* =argmin Y 7(0)p7 (z;0) . pxy (x, y; OW(y, ') (15)
y'el 9e® yel
that differs from (14). Moreover, any decision that differs from (15) can be
replaced with a decision of the form (15) with better recognition quality.

There is nothing in decision (15) that could be treated as selecting some best model
from the model set and so no question stands on what estimator 6°’: Z — @ has to be
used. No model has to be selected. On the contrary, all models should take part with their
weights in making the decision. It is essential that the weights do not depend on learning
data, they are determined by the requirement for the desired strategy in a particular
applied situation. The paper shows a way for computing these weights for minimax
deviation strategy that is appropriate for learning samples of any length and in such a way
fills the gap between maximum likelihood and minimax strategies.

Minimax deviation strategy is not at all a single strategy that is reasonable in
such or other application. Many other strategies are appropriate too, for example,
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strategies of the form
¢ arommin ma R(@:0) = (0)
gmin max

(16)
g0 60 P(O)

with predefined numbers «(0) and B(0)>0. The minimax strategy is a special case

of (16) when a(0)=0, $(0)=1, and the minimax deviation strategy is a case when

a(0)=min R(q,0), f(0)=1. A reasonable modification of the minimax deviation
q<Q

strategy is a case when a(0)=0, ﬁ(9)=mieré R(q,6). The numbers a(f) may be
q
risks of some other previously developed strategy and this is a case when the
developer wants to check whether another better strategy is possible. At last, numbers
a(0) may simply be desired values of risk in a particular applied situation.
Requirements of the form (16) together with various loss functions determine various
applied situations. The obtained results show the way to cope with all of them. It has
become quite clear now that each strategy of the form (16) may be represented in the form
(15) because, obviously, none of them are improper. Obtained results imply an unexpected
conclusion that learning data take part in the decision (15) in a unified form that depends
neither on the applied situation nor on the object under ecognition, no question stands
anymore on how the learning data have to influence the decision about the current state
when the current signal is observed. Learning data influence the decision via and only via
probabilities p, (z;0), not via a choice of some best model from the model set.
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M.I. llaesinrep, €.B. Bogonascbkuii

MIHIMAKCHI CTPATEI'Ti MAIIMHHOTO HABYAHHS 1 PO3MI3HABAHHSI OBPA3IB
HA OCHOBI KOPOTKHUX HABYAJIbHUX BUBIPOK

AHoTanis. Bukonano anami3z 3ajga4d po3nizHaBaHHS 00pa3iB 1 MAIIMHHOTO HABYAHHS y BHIIAJKY,
KOJIM SIKICTb CTpATeriil juls IXHbOrO PO3B’s3aHHS BHU3HAYAETHCA PU3MKOM IIijl 4ac IXHBOI'O BHKO-
pucranHs. CHHUparO4nch Ha IMOHATTS OaraTOKpUTepiiHOI onTHMI3alii, BH3HAYCHO Kiac cTpa-
Teriif, HeNmpUAATHUX AJsS PO3B’s3aHHS 3a/ad, i BUBEICHO 3aralbHUN BHUIVI YCIX IHIIMX CTpa-
teriif. TTokazaHO, IO 3aCTOCYBaHHS OKPEMHUX IIHPOKOBKMBAHUX IIAXOIIB NPU3BOIUTH IO He-
NPUJATHUX Yy BU3HAYEHOMY CEHCi crpareriii. 3okpema, Ie cTparerii, 1[0 IPYHTYIOTbCS Ha
HaWBIPOTiTHINIOMY OLIHIOBAaHHI, OCOOJIMBO y pa3i BUKOPHUCTAHHS HaBUAJIBHUX BHOIPOK (hikcoBa-
Horo i manoro obcsry. CopmynboBaHO 3agadi po3mi3HaBaHHS 1 HaBYAHHS B €IUHIN yHidiKoO-
BaHii (opMmi, sIKa OXOIUIIOE YBECh CIEKTP OOCSATIB HaBYaJIbHUX BHOIPOK, IO BKIIOYAE BUOIPKH
HYJILOBOTO 00csry. JloBeneHo, 110 po3B’si3aHHA 3a/a4 y HaBeAeHOMY (DOPMYJIIOBAHHI BHKIIOYAE
oTpuMaHHs HempuzaatHoi crparerii. ChopMyIbOBaHO MOHSTTS CTpaTeriii po3Ii3HaBaHHS 1 Ha-
BYAHHS, 10 MiHIMI3yIOTh MaKCHMalbHE BiIXWJICHHS JOCSATHYTOI SIKOCTI Bix Oa)kaHOl, sika, MOX-
JIMBO, € HENOCSHKHOK. HaBeneHo mpukiaay moOyIoBH TaKUX CTpATeriii Ta IXHBOTO MOPIBHSHHS
3 MIMPOKOBXXKMBAHUMHU METOJAMH, IO IPYHTYIOThCS HAa HAMBIPOTiAHIIIOMY OLIHIOBAHHI.

KorouoBi cioBa: posmizHaBaHHs 00pa3iB, MallMHHHE HaBYaHHS, KOPOTKI HaBYaJIbHI BHOIpKH.
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