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MINIMAX THEOREM FOR FUNCTIONS ON THE CARTHESIAN
PRODUCT OF BRANCHING POLYLINES

Abstract. The paper proves the minimax theorem for a specific class of functions that are
defined on branching polylines in a linear space, not on convex subsets of a linear space. The
existence of a saddle point for such functions does not follow directly from the classical
minimax theorem and needs individual consideration based both on convex analysis and on
graph theory. The paper presents a self-sufficient analysis of the problem. It contains
everything that enables plain understanding of the main result and its proof and avoids using
concepts outside the scope of obligatory mathematical education of engineers. The paper is
adressed to researchers in applied mechanics, engineering and other applied sciences as well as
to mathematicians who lecture convex analysis and optimization methods to
non-mathematicians.
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The minimax theorem, also known as the saddle point theorem, states one of the

fundamental concepts in economics, mechanics, electrical engineering and other

applied nonmathematical sciences. Classical version of the minimax theorem has

been formulated and proven by J. von Neumann in 1928 [1], generalized by

M. Sion in 1958 [2] and newly proven in [3–5].

This paper proves the minimax theorem for specific functions that do not satisfy

the conditions of the minimax theorem in its commonly used formulation. These

functions are defined on non-convex subsets of linear spaces referred to as branching

polylines. The existence of a saddle point for such functions cannot be resolved by

a mere reference to the classical minimax theorem and needs individual consideration.

The paper presents a self-sufficient analysis of the problem. It contains everything

that enables a plain understanding of the main result and its proof and avoids using

concepts outside the scope of obligatory mathematical education of engineers.

1. DEFINITIONS AND FORMULATION OF THE MAIN RESULT

Let � , � , �
� be sets of real numbers, nonnegative and positive integers,

respectively. Let �
k , k � �

� , be a k-dimensional linear space with Euclidean

metric �k k k: � � �� � , where value �k x x( , )� is the distance between points

x k�� and � �x k
� . A line segment between points x x k, � �� is denoted as

[ , ] ( ) |x x x x� � 	 
 � 	 � � �{ }� � �1 0 1 .

For a given set X and a function f X: � � symbols “argmax” and “argmin” are

used to express the sets

arg }max ( ) { | ( ) max ( )
x X x X

f x u X f u f x
� �

� � � ,

arg { }min ( ) | ( ) min ( )
x X x X

f x u X f u f x
� �

� � � .

Let X m
 � and Y n
 � be closed bounded sets and f X Y: � � � be

a continuous function of two arguments. For any such function the inequality

min max ( , ) max min ( , )
x X y Y y Y x X

f x y f x y
� � � �

� (1)
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