УДК 519.8
О.Г. ХАНІН,
Волинський національний університет імені Лесі Українки, Луцьк, Україна,
aleks.hanin@ukr.net
Б.М. БОРСУК,
Волинський національний університет імені Лесі Українки, Луцьк, Україна,
b.borsuk@outlook.com
АПРОКСИМАТИВНІ ХАРАКТЕРИСТИКИ УЗАГАЛЬНЕНИХ
ОПЕРАТОРІВ ПУАССОНА НА КЛАСАХ ЗИГМУНДА
Анотація. Досліджено апроксимативні характеристики узагальнених операторів Пуассона
на класах функцій Зигмунда Z α для подальшого їхнього застосування в теорії оптимальних рішень.
Класи функцій Зигмунда Z α сьогодні все частіше використовують в оптимізаційних методах,
що зумовлює актуальність розв’язуваної задачі. Отримано оцінку верхньої межі відхилення функцій
класу Зигмунда Z α від їхніх узагальнених операторів Пуассона в рівномірній метриці.
Узагальнені оператори Пуассона як розв’язки відповідних диференціальних рівнянь
в частинних похідних еліптичного типу є лінійними додатними операторами,
а тому вони реалізують найкраще асимптотичне наближення функцій класу Z α.
Тобто маємо конкретну реалізацію оптимізаційних задач методами теорії наближень.
Ключові слова: оптимізаційні властивості функцій, апроксимативні характеристики, лінійні додатні оператори, класи Зигмунда.
повний текст
СПИСОК ЛІТЕРАТУРИ
- Chikrii A.A., Eidel’man S.D. Generalized Mittag-Leffler matrix functions in game problems for evolutionary equations of fractional order. Cybernetics and Systems Analysis. 2000. Vol. 36, N 3. P. 315–338. https://doi.org/10.1007/BF02732983.
- Pilipenko Yu.B., Chikrii A.A. Oscillatory conflict-control processes. Journal of Applied Mathematics and Mechanics. 1993. Vol. 57, N 3. P. 407–417. https://doi.org/10.1016/ 0021-8928(93)90119-7.
- Albus J., Meystel A., Chikrii A.A., Belousov A.A., Kozlov A.I. Analytical method for solution of the game problem of soft landing for moving objects. Cybernetics and Systems Analysis. 2001. Vol. 37, N 1. P. 75–91. https://doi.org/10.1023/A:1016620201241.
- Владимиров В.С. Уравнения математической физики. 4-е изд. Москва: Наука. Главная редакция физико-математической литературы, 1981. 512 с.
- Zhyhallo K.M., Kharkevych Yu.I. Complete asymptotics of the deviation of a class of differentiable functions from the set of their harmonic Poisson integrals. Ukrainian Math. J. 2002. Vol. 54, N 1. P. 51–63. https://doi.org/10.1023/A:1019789402502.
- Kharkevych Yu.I. On Approximation of the quasi-smooth functions by their Poisson type integrals. Journal of Automation and Information Sciences. 2017. Vol. 49, N 10. P. 74–81. https://doi.org/10.1615/JAutomatInfScien.v49.i10.80.
- Chikrii A.A., Matychyn I.I. Game problems for fractional-order linear systems. Proceedings of the Steklov Institute of Mathematics. 2010. Vol. 268. P. 54–70. https://doi.org/10.1134/S0081543810050056.
- Chikrii A., Matychyn I. Riemann–Liouville, Caputo, and sequential fractional derivatives in differential games. Breton M., Szajowski K. (Eds.). Advances in Dynamic Games. Annals of the International Society of Dynamic Games book series (AISDG). 2011. Vol. 11. P. 61–81. https://doi.org/10.1007/978-0-8176-8089-3_4.
- Bushev D.M., Kharkevych Yu.I. Conditions of convergence almost everywhere for the convolution of a function with delta-shaped kernel to this function. Ukrainian Math. J. 2016. Vol. 67, N 11. P. 1643–1661. https://doi.org/10.1007/s11253-016-1180-y.
- Dzyubenko G.Ts., Pshenichnyi B.N. Discrete differential games with information lag. Cybernetics. 1972. Vol. 8, N 6. P. 947–952. https://doi.org/10.1007/BF01068518.
- Баусов Л.И. О приближении функций класса положительными методами суммирования рядов Фурье. Успехи мат. наук. 1961. Т. 16, № 3(99). C.143–149.
- Kharkevych Yu.I. Asymptotic expansions of upper bounds of deviations of functions of class from their generalized Poisson integrals. Journal of Automation and Information Sciences. 2018. Vol. 50, N 8. P. 38–49. https://doi.org/10.1615/jautomatinfscien.v50.i8.40.
- Степанец А.И. Равномерные приближения тригонометрическими полиномами. Киев: Наук. думка, 1981. 340 с.
- Kharkevych Yu.I. Approximative properties of the generalized Poisson integrals on the classes of functions determined by a modulus of continuity. Journal of Automation and Information Sciences. 2019. Vol. 51, N 4. P. 43–54. https://doi.org/10.1615/JAutomatInfScien.v51.i4.40.
- Zhyhallo K.M., Kharkevych Yu.I. On the approximation of functions of the Holder class by biharmonic Poisson integrals. Ukrainian Math. J. 2000. Vol. 52, N 7. P. 1113–1117. https://doi.org/10.1023/A:1005285818550.
- Kal’chuk I.V. Approximation of -differentiable functions defined on the real axis by Weierstrass operators. Ukrainian Math. J. 2007. Vol. 59, N 9. P. 1342–1363. https://doi.org/10.1007/s11253-007-0091-3.
- Kharkevych Yu.I., Kal’chuk I.V. Asymptotics of the values of approximations in the mean for classes of differentiable functions by using biharmonic Poisson integrals. Ukrainian Math. J. 2007. Vol. 59, N 8. P. 1224–1237. https://doi.org/10.1007/s11253-007-0082-4.
- Zhyhallo K.M., Kharkevych Yu.I. On the approximation of functions of the Hlder class by triharmonic Poisson integrals. Ukrainian Math. J. 2001. Vol. 53, N 6. P. 1012–1018. https://doi.org/10.1023/A:1013364321249.
- Hrabova U.Z., Kal’chuk I.V. Approximation of the classes by three-harmonic Poisson integrals. Carpathian Math. Publ. 2019. Vol. 11, N 2, P. 10–23. https://doi.org/ 10.15330/cmp.11.2.321-334.
- Градштейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. Москва: Физматгиз, 1963. 1100 с.
- Kal’chuk I.V., Kharkevych Y.I. Approximation of the classes by generalized Abel-Poisson integrals. Ukrains’kyi Matematychnyi Zhurnal. 2022. Vol. 74, N 4. P. 507–515. https://doi.org/10.37863/umzh.v74i4.7164.
- Zhyhallo K.M., Kharkevych Yu.I. Approximation of functions from the classes by biharmonic Poisson integrals. Ukrainian Math. J. 2011. Vol. 63, N 7. P. 1083–1107. https://doi.org/10.1007/s11253-011-0565-1.
- Zhyhallo K.M., Kharkevych Yu.I. Approximation of -differentiable functions of low smoothness by biharmonic Poisson integrals. Ukrainian Math. J. 2012. Vol. 63, N 12. P. 1820–1844. https://doi.org/10.1007/s11253-012-0616-2.
- Kal’chuk I.V., Kravets V.I., Hrabova U.Z. Approximation of the classes by three-harmonic Poisson integrals. J. Math. Sci. (N. Y.). 2020. Vol. 246, N 2. P. 39–50. https://doi.org/10.1007/s10958-020-04721-4.
- Kal’chuk I.V., Hrabova U.Z., Filozof L.I. Approximation of the classes by three-harmonic Poisson integrals. J. Math. Sci. (N.Y.). 2021. Vol. 254, N 3. P. 397–405. https://doi.org/10.1007/s10958-021-05311-8.
- Kal’chuk I.V., Kharkevych Yu.I., Pozharska K.V. Asymptotics of approximation of functions by conjugate Poisson integrals. Carpathian Math. Publ. 2020. Vol. 12, N 1. P. 138–147. https://doi.org/10.15330/cmp.12.1.138-147.
- Kal’chuk I., Kharkevych Y. Approximation properties of the generalized Abel–Poisson Integrals on the Weyl–Nagy Classes. Axioms. 2022. Vol. 11, N 4: 161. https://doi.org/10.3390/axioms11040161.
- Zhyhallo K.M., Kharkevych Yu.I. Approximation of differentiable periodic functions by their biharmonic Poisson integrals. Ukrainian Math. J. 2002. Vol. 54, N 9. P. 1462–1470. https://doi.org/10.1023/A:1023463801914.
- Abdullayev F.G., Kharkevych Yu.I. Approximation of the classes by biharmonic Poisson integrals. Ukrainian Math. J. 2020. Vol. 72, N 1. P. 21–38. https://doi.org/ 10.1007/s11253-020-01761-6.
- Zhyhallo T.V., Kharkevych Yu.I. On approximation of functions from the class by the Abel-Poisson integrals in the integral metric. Carpathian Math. Publ. 2022. Vol. 14, N 1. P. 223–229. https://doi.org/10.15330/cmp.14.1.223-229.
- Zhyhallo K.M., Kharkevych Yu.I. Approximation of conjugate differentiable functions by biharmonic Poisson integrals. Ukrainian Math. J. 2009. Vol. 61, N 3. P. 399–413. https://doi.org/10.1007/s11253-009-0217-x.
- Chikrii A.A., Chikrii G.Ts. Matrix resolving functions in game problems of dynamics. Proceedings of the Steklov Institute of Mathematics. 2015. Vol. 291. P. 56–65. https://doi.org/10.1134/S0081543815090047.
- Vlasenko L.A., Rutkas A.G., Chikrii A.A. On a differential game in an abstract parabolic system. Proceedings of the Steklov Institute of Mathematics. 2016. Vol. 293. P. 254–269. https://doi.org/10.1134/S0081543816050229.
- Kharkevych Yu.I. On some asymptotic properties of solutions to biharmonic equations. Cybernetics and Systems Analysis. 2022. Vol. 58, N 2. P. 251–258. https://doi.org/10.1007/s10559-022-00457-y.
- Tovkach R., Kharkevych Y., Kal’chuk I. Application of a fourier series for an analysis of a network signals. IEEE International Conference on Advanced Trends in Information Theory (IEEE ATIT 2019). Kyiv, Ukraine, 2019 P. 107–110. https://doi.org/10.1109/ATIT49449.2019.9030488.
- Makarchuk A., Kal’chuk I., Kharkevych Y., Yakovleva A. The Usage of interpolation polynomials in the studying of data transmission in networks. IEEE 2nd International Conference on System Analysis & Intelligent Computing (SAIC). Kyiv, Ukraine. 2020. P. 1–4. https://doi.org/10.1109/SAIC51296.2020.9239180.