Abstract. In this paper, a comprehensive review of approaches to solve multimodal function optimization problems via genetic algorithms is provided. Niching genetic algorithms are presented according to their space–time classification. Methods based on fitness sharing and crowding methods are described in detail as they are the most frequently used. In the absence of established terminology, Russian-language equivalents of English terms are proposed.
Keywords: genetic algorithm, multimodal function optimization, niching methods.
Глибовец Николай Николаевич,
доктор физ.-мат. наук, профессор, декан Национального университета «Киево-Могилянская академия»,
e-mail: glib@ukma.kiev.ua.
Гулаева Наталия Михайловна,
кандидат физ.-мат. наук, доцент Национального университета «Киево-Могилянская академия»,
e-mail: ngulayeva@yahoo.com.