Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
UDC 519.85
S.V. Yakovlev1


1 N.Ye. Zhukovskiy National Aerospace University “Kharkiv Aviation Institute,” Kharkiv, Ukraine

svsyak7@gmail.com

FORMALIZATION OF SPATIAL CONFIGURATION OPTIMIZATION PROBLEMS
WITH A SPECIAL FUNCTION CLASS

Abstract. An approach to the study of optimization problems of spatial configurations based on the formation of configuration spaces of geometric objects is proposed. Depending on the choice of generalized variables, various classes of spatial configurations are investigated. A class of functions in the configuration space of geometric objects is introduced, which allows us to propose new and develop available approaches for the formalization of optimization problems for spatial configurations. The problem of placing circular objects in a limited area by the criterion of minimizing the total area of their pairwise intersections is considered.

Keywords: geometric object, configuration space, generalized variables, optimization, placement, coverage.



FULL TEXT

REFERENCES

  1. Fasano G. A modeling-based approach for non-standard packing problems. Optimized Packings with Applications. 2015. Vol. 105. P. 67–85. DOI: https://doi.org/10.1007/978-3-319-18899-7_4.

  2. Wascher G., Hausner H., Schumann H. An improved typology of cutting and packing problems. European Journal of Operational Research. 2007. Vol. 183. P. 1109–1130. DOI: https://doi.org/10.1016/j.ejor.2005.12.047.

  3. Fadel G.M., Wiecek M.M. Packing optimization of free-form objects in engineering design. Optimized Packings with Applications. 2015. Vol. 105. P. 37–66.

  4. Stoyan Yu., Pankratov A., Romanova T. Placement problems for irregular objects: Mathematical modeling, optimization and applications. Optimization Methods and Applications. 2017. P. 521–558. DOI: https://doi.org/10.1007/978-3-319-68640-0_25.

  5. Drira A., Pierreval H., Hajri-Gabouj S. Facility layout problems: A survey. Annual Reviews in Control. 2007. Vol. 31, N 2. P. 255–267. DOI: https://doi.org/10.1016/j.arcontrol.2007.04.001.

  6. Bortfeldt A., Wascher G. Constraints in container loading: A state-of-the-art review. European Journal of Operational Research. 2013. Vol. 229, N 1. P. 1–20. DOI: https://doi.org/10.1016/ j.ejor.2012.12.006.

  7. Stoyan Yu.G., Semkin V.V., Chugay A.M. Optimization of 3D objects layout into a multiply connected domain with account for shortest distances. Cybernetics and Systems Analysis. 2014. Vol. 50, N 3. P. 374–385. DOI: https://doi.org/10.1007/s10559-014-9626-4.

  8. Tian T., Zhu W., Lim A., Wei L. The multiple container loading problem with preference. European Journal of Operational Research. 2016. Vol. 248, N 1. P. 84–94.

  9. Stoyan Yu.G., Patsuk V.M. Covering a convex 3D polytope by a minimal number of congruent spheres. International Journal of Computer Mathematics. 2014. Vol. 91, N 9. P. 2010–2020. DOI: https://doi.org/10.1080/00207160.2013.865726.

  10. Yakovlev S.V. On a class of problems on covering of a bounded set. Acta Mathematica Hungarica. 1989. Vol. 53, N 3. P. 253–262. DOI: https://doi.org/10.1007/BF01953365.

  11. Shekhovtsov S.B., Yakovlev S.V. Formalization and solution of one class of covering problem in design of control and monitoring systems. Avtomatika i Telemekhanica. 1989. Vol. 50, N 5. P. 705–710. URL: http://mi.mathnet.ru/eng/at6296.

  12. Kiseleva E.M., Lozovskaya L.I., Timoshenko E.V. Solution of continuous problems of optimal covering with spheres using optimal set-partition theory. Cybernetics and Systems Analysis. 2009. Vol. 45, N 3. P. 421–437. DOI: https://doi.org/10.1007/s10559-009-9113-5.

  13. Kiselyova O.M. Formation and development of the theory of optimal splitting of sets. Theoretical and practical applications [in Ukrainian]. Dnepr: Lira, 2018. 532 p.

  14. Kiseleva EM, Koryashkina L. S. Models and methods for solving continuous problems of optimal partitioning of sets: linear, non-linear, dynamic problems [in Russian]. Kiev: Nauk. Dumka, 2013. 604 p.

  15. Berge C. Principes de combinatoire. Paris: Dunod, 1968. 146 p.

  16. Rvachev V.L. The theory of R-functions and some of its applications [in Russian]. Kiev: Nauk. Dumka, 1982. 552 p.

  17. Stoyan Yu.G., Yakovlev S.V. Mathematical models and optimization methods of geometric design [in Russian]. Kiev: Nauk. Dumka, 1986. 268 p.

  18. Stoyan Y.G., Yakovlev S.V. Configuration space of geometric objects. Cybernetics and Systems Analysis. 2018. Vol. 54, N 5. P. 716–726. DOI: https://doi.org/10.1007/s10559-018-0073-5.

  19. Yakovlev S.V. On some classes of spatial configurations of geometric objects and their formalization. Journal of Automation and Information Sciences. 2018. Vol. 50, N 9. P. 38–50. DOI: https://doi.org/10.1615/JAutomatInfScien.v50.i9.30.

  20. Stoyan Y., Gil M., Terno J., Romanova T., Schithauer G. Ф-function for complex 2D objects. 4OR Quarterly Journal of the Belgian, French and Italian. Operations Research Societies. 2004. Vol. 2, N 1. P. 69–84.

  21. Stoyan Yu., Scheithauer G., Romanova T. Mathematical modeling of interaction of primary geometric 3D objects. Cybernetics and Systems Analysis. 2005. Vol. 41, N 3. P. 332–342. DOI: https://doi.org/10.1007/s10559-005-0067-y.

  22. Stoyan Yu., Romanova T., Pankratov A., Chugay A. Optimized object packings using quasi-phi-functions. Optimized Packings with Applications. 2015. Vol. 105. P. 265–293. DOI: https://doi.org/10.1007/978-3-319-18899-7_13.

  23. Шор Н.З. Методы минимизации недифференцируемых функций и их приложения. Киев: Наук. думка, 1979. 200 с.

  24. Stetsyuk P.I. Shor’s r-algorithms: Theory and practice. Springer Optimization and its Applications. 2017. Vol. 130. P. 239–250.

  25. Stetsyuk P.I. Theory and software implementations of Shor’s r-algorithms. Cybernetics and Systems Analysis. 2017. Vol. 53, N 5. P. 692–703. DOI: https://doi.org/10.1007/s10559-017-9971-1.

  26. Киселева Е.М., Шор Н.З. Непрерывные задачи оптимального разбиения множеств: теория, алгоритмы, приложения. Киев: Наук. думка, 2005. 564 с.

  27. Kiseleva E.M., Koriashkina L.S. Theory of continuous optimal set partitioning problems as a universal mathematical formalism for constructing Voronoi diagrams and their generalizations. Cybernetics and Systems Analysis. 2015. Vol. 51, N 3. P. 325–335. DOI: https://doi.org/10.1007/s10559-015-9725-x.

  28. Kiseleva E.M., Prytomanova O.M., Zhuravel S.V. Algorithm for solving a continuous problem of optimal partitioning with neurolinguistic identification of functions in target functional. Journal of Automation and Information Sciences. 2018. Vol 50, N 3. P. 102–112.

  29. Stoyan Y., Romanova T., Pankratov A., Kovalenko A., Stetsyuk P. Balance layout problems: Mathematical modeling and nonlinear optimization. Springer Optimization and its Applications. 2016. Vol. 114. P. 369–400. DOI: https://doi.org/10.1007/s10559-015-9746-5.

  30. Stoyan Yu.G., Sokolovskii V.Z., Yakovlev S.V. Method of balancing rotating discretely distributed masses. Energomashinostroenie. 1982. N 2. P. 4-5.

  31. Стоян Ю.Г., Соколовский В.З. Решение некоторых многоэкстремальных задач методом сужающихся окрестностей. Киев: Наук. думка, 1980. 205 с.

  32. Михалевич В.С. Последовательные алгоритмы оптимизации и их применение. Кибернетика. 1965. № 1. С. 45–56, № 2 С. 85–88.

  33. Yakovlev S., Kartashov O., Korobchynskyi K. The informational analytical technologies of synthesis of optimal spatial configuration. Proc. IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies, CSIT’2018. 2018. P. 374–377.

  34. Yakovlev S., Kartashov O. System analysis and classification of spatial configurations. Proc. IEEE 1st International Conference on System Analysis and Intelligent Computing, SAIC’2018. 2018. P. 1–6. DOI: https://doi.org/10.1109/SAIC.2018.8516760.

  35. Яковлев С.В. О комбинаторной структуре задач оптимального размещения геометрических объектов. Докл. НАН Украины. 2017. № 9. С. 63–68. URL: http://nbuv.gov.ua/UJRN/dnanu_2017_9_7.

  36. Yakovlev S.V. The method of artificial dilation in problems of optimal packing of geometric objects. Cybernetics and Systems Analysis. 2017. Vol. 53, N 5. P. 725–731. DOI: https://doi.org/10.1007/ s10559-017-9974-y.

  37. Hulianytskyi L., Riasna I. Formalization and classification of combinatorial optimization problems. Springer Optimization and Its Applications. 2017. Vol. 130. P. 239–250. DOI: https://doi.org/ 10.1007/978-3-319-68640-0_11.

  38. Стоян Ю.Г., Яковлев С.В., Пичугина О.С. Евклидовы комбинаторные конфигурации. Харьков: Константа, 2017. 404 с.

  39. Yakovlev S. Convex extensions in combinatorial optimization and their applications. Springer Optimization and its Applications. 2017. Vol. 130. P. 567–584. DOI: https://doi.org/10.1007/978-3- 319-68640-0_27.

  40. Pichugina O.S., Yakovlev S.V. Continuous representations and functional extensions in combinatorial optimization. Cybernetics and Systems Analysis. 2016. Vol. 52. N 6. P. 921–930. DOI: https://doi.org/10.1007/s10559-016-9894-2.

  41. Yakovlev S.V., Pichugina O.S. Properties of combinatorial optimization problems over polyhedral-spherical sets. Cybernetics and Systems Analysis. 2018. Vol. 54. N 1. P. 111–123. DOI: https://doi.org/10.1007/s10559-018-0011-6.
© 2019 Kibernetika.org. All rights reserved.