UDC 004.93.1
|
2 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
budnyk@meta.ua
|
INFORMATION-EXTREME MACHINE LEARNING OF ON-BOARD
VEHICLE RECOGNITION SYSTEM
Abstract. The article proposes a categorical model and algorithm for information-extreme machine learning of the on-board recognition system for small ground vehicles. The decision rules constructed as a result of machine learning are invariant to an arbitrary position of the object of recognition in the frame of the region of interest.
Keywords: information and extreme intelligent technology, machine learning, information criterion of optimization, on-board recognition system, ground-based object, polar coordinate system, vehicle.
FULL TEXT
REFERENCES
- Hastie T., Tibshirami R., Eridman J. The elements of statistical learning: data mining, inference and prediction. 2nd ed. New York: Springer-Verlag, 2009. 746 p.
- Mller K.R., Mika S., Rtsch G., Tsuda K., Schlkopf B. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks. 2001. Vol. 12, N 2. P. 181–202.
- Subbotin S. The neuro-fuzzy network synthesis and simplification on precedents in problems of diagnosis and pattern recognition. Optical Memory and Neural Networks (Information Optics). 2013. Vol. 22, N 2. P. 97–103. http://doi.org/10.3103/s1060992x13020082.
- Zheng H.L., Fu J.L., Mei T., Luo J.B. Learning multi-attention convolutional neural network for fine-grained image recognition. Proc. IEEE International Conference on Computer Vision (22–29 October 2017, Venice, Italy). Venice, 2017. P. 5219–5227.
- Ciresan D., Meier U., Schmidhuber J. Multi-column deep neural networks for image classification. Proc. 25th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2012). (18–20 June 2012, Rhode Island, USA). Rhode Island, 2012. P. 3642–3649.
- Jauregi E., Lazkano E., Martinez-Otzeta J.M., Sierra B. Visual approaches for handle recognition. Proc. European Robotics Symposium 2008 (EUROS 2008) (26–27 March 2008, Prague, Czech Republic). Prague, 2008. P. 313–322. http://doi.org/10.1007/978-3-540-78317-6_32.
- Huang H., Lu L., Yan B., Chen J. A new scale invariant feature detector and modified SURF descriptor. Proc. Sixth International Conference on Natural Computation (ICNC 2010). (10–12 August 2010, Yantai, Shandong, China). Yantai, Shandong, 2010. P. 3734–3738. http://doi.org/10.1109/ICNC.2010. 5583377.
- Dovbysh A.S., Rudenko M.S. Information-extreme learning algorithm for a system of recognition of morphological images in diagnosing oncological pathologies. Cybernetics and Systems Analysis. 2014. Vol. 50, N 1. P. 157–162. http://doi.org/10.1007/s10559-014-9603-y.
- Dovbysh А.S., Moskalenko V.V., Rizhova A.S. Information-extreme method for classification of observations with categorical attributes. Cybernetics and Systems Analysis. 2016. Vol. 52, N 2. P. 224–231. http://doi.org/10.1007/s10559-016-9818-1.
- Dovbysh A., Velykodnyi D., Shelehov I., Bibyk M. Information-extreme machine learning of the control system over the power unit of a thermal power main line. Eastern-European Journal of Enterprise Technologies. 2017. Vol. 5, N 4 (89). P. 17–24. http://doi.org/10.15587/1729-4061.2017. 112121.