Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
UDC 004.93.1
A.S. Dovbysh1, M.M. Budnyk2, V.Yu. Piatachenko3, M.I. Myronenko4


1 Sumy State University, Sumy, Ukraine

a.dovbysh@cs.sumdu.edu.ua

2 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

budnyk@meta.ua

3 Sumy State University, Sumy, Ukraine

bronzeghoste@gmail.com

4 Sumy State University, Sumy, Ukraine

nikitam1996@ukr.net

INFORMATION-EXTREME MACHINE LEARNING OF ON-BOARD
VEHICLE RECOGNITION SYSTEM

Abstract. The article proposes a categorical model and algorithm for information-extreme machine learning of the on-board recognition system for small ground vehicles. The decision rules constructed as a result of machine learning are invariant to an arbitrary position of the object of recognition in the frame of the region of interest.

Keywords: information and extreme intelligent technology, machine learning, information criterion of optimization, on-board recognition system, ground-based object, polar coordinate system, vehicle.



FULL TEXT

REFERENCES

  1. Hastie T., Tibshirami R., Eridman J. The elements of statistical learning: data mining, inference and prediction. 2nd ed. New York: Springer-Verlag, 2009. 746 p.

  2. Mller K.R., Mika S., Rtsch G., Tsuda K., Schlkopf B. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks. 2001. Vol. 12, N 2. P. 181–202.

  3. Subbotin S. The neuro-fuzzy network synthesis and simplification on precedents in problems of diagnosis and pattern recognition. Optical Memory and Neural Networks (Information Optics). 2013. Vol. 22, N 2. P. 97–103. http://doi.org/10.3103/s1060992x13020082.

  4. Zheng H.L., Fu J.L., Mei T., Luo J.B. Learning multi-attention convolutional neural network for fine-grained image recognition. Proc. IEEE International Conference on Computer Vision (22–29 October 2017, Venice, Italy). Venice, 2017. P. 5219–5227.

  5. Ciresan D., Meier U., Schmidhuber J. Multi-column deep neural networks for image classification. Proc. 25th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2012). (18–20 June 2012, Rhode Island, USA). Rhode Island, 2012. P. 3642–3649.

  6. Jauregi E., Lazkano E., Martinez-Otzeta J.M., Sierra B. Visual approaches for handle recognition. Proc. European Robotics Symposium 2008 (EUROS 2008) (26–27 March 2008, Prague, Czech Republic). Prague, 2008. P. 313–322. http://doi.org/10.1007/978-3-540-78317-6_32.

  7. Huang H., Lu L., Yan B., Chen J. A new scale invariant feature detector and modified SURF descriptor. Proc. Sixth International Conference on Natural Computation (ICNC 2010). (10–12 August 2010, Yantai, Shandong, China). Yantai, Shandong, 2010. P. 3734–3738. http://doi.org/10.1109/ICNC.2010. 5583377.

  8. Dovbysh A.S., Rudenko M.S. Information-extreme learning algorithm for a system of recognition of morphological images in diagnosing oncological pathologies. Cybernetics and Systems Analysis. 2014. Vol. 50, N 1. P. 157–162. http://doi.org/10.1007/s10559-014-9603-y.

  9. Dovbysh А.S., Moskalenko V.V., Rizhova A.S. Information-extreme method for classification of observations with categorical attributes. Cybernetics and Systems Analysis. 2016. Vol. 52, N 2. P. 224–231. http://doi.org/10.1007/s10559-016-9818-1.

  10. Dovbysh A., Velykodnyi D., Shelehov I., Bibyk M. Information-extreme machine learning of the control system over the power unit of a thermal power main line. Eastern-European Journal of Enterprise Technologies. 2017. Vol. 5, N 4 (89). P. 17–24. http://doi.org/10.15587/1729-4061.2017. 112121.
© 2020 Kibernetika.org. All rights reserved.