Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
UDC 004.2
M. Sarsembayev1, B. Urmashev2, N. Mladenovic3, V.A. Zaslavskyi4


1 Al-Farabi Kazakh National University, Almaty, Kazakhstan

sarsembayev.magzhan@gmail.com

2 Al-Farabi Kazakh National University, Almaty, Kazakhstan

baydaulet.urmashev@gmail.com

3 Mathematical Institute of the Serbian Academy of Sciences
and Arts, Belgrade, Serbia

nenad@mi.sanu.ac.rs

4 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

zas@unicyb.kiev.ua

SOLVING THE PROBLEMS OF CHEMICAL KINETICS BY USING THE CUDA TECHNOLOGY

Abstract. The paper focuses on the problem of chemical kinetics, calculation of changes in the concentration of substances in the reactions over time, and creation of a mass kinetic solver to solve the problem using modern parallelization technologies. A mathematical model of variation in the concentration of substances in a system with a one-dimensional approximation and the possibility of accelerating the calculations using the CUDA technology are described. The calculation performed on NVIDIA graphic processor showed that an increase in the number of responses much reduces the computing time as compared with the computing time on the central processors.

Keywords: combustion, combustion mechanisms, parallel computation, graphic processors, CUDA, Runge–Kutta method.



FULL TEXT

REFERENCES

  1. Varnatts Yu., Maas U., Dibble R. Burning physical and chemical aspects, modeling, experiments, formation of pollutants. Trans. Agafonova G.L., Ed. Vlasov P.A. Moscow: Fizmatlit, 2003. 352 p.

  2. Pio G., Ricca A., Palma V., Salzano E. Low temperature combustion of methane/alkenes mixtures. Fuel. 2019. Vol. 254. Article 115567. P. 224–231. https://doi.org/10.1016/j.fuel.2019.05.150.

  3. Kuppa K., Nguyen H.D., Goldmann A., Korb B., Wachtmeister G., Dinkelacker F. Numerical modelling of unburned hydrocarbon emissions in gas engines with varied fuels. Fuel. 2019. Vol. 254. Article 115532. P. 1–13. https://doi.org/10.1016/j.fuel.2019.05.115.

  4. Syrodoy S., Penyazkov O., Assad M., Gutareva N. Mathematical modeling of the electric spark ignition of the coal-water particle fuel under conditions relevant to the internal combustion engines. MATEC Web of Conferences. 2016. Vol. 92. Article 01028. P. 1024–1030. https://doi.org/ 10.1051/matecconf/20179201028.

  5. Sathiah P., Holler T., Kljenak I., Komen E. The role of CFD combustion modeling in hydrogen safety management. V. Validation for slow deflagrations in homogeneous hydrogen-air experiments. Nuclear Engineering and Design. 2016. Vol. 310. P. 520–531. https://doi.org/10.1016/ j.nucengdes.2016.06.030.

  6. Fattah I.M.R., Yip H.L., Jiang Z., Yuen Anthony C.Y., Yang W., Medwell P., Kook S., Yeoh G., Chan Q. Effects of flame-plane wall impingement on diesel combustion and soot processes. Fuel. 2019. Vol. 255. Article 115726. P. 59–69. https://doi.org/10.1016/j.fuel.2019.115726.

  7. Zhapbasbaev U.K., Makashev E.P. Diffusion combustion of a system of plane supersonic hydrogen jets in a supersonic flow. Combustion explosion and shock waves. 2003. Vol. 39. P. 415–422.

  8. NVIDIA CUDA parallel computing platform Programming Guide. URL: http://www.nvidia.ru/ object/cuda-parallel-computing-ru.html.

  9. Harris M. Mapping computational concepts to GPUs. GPU Gems. 2006. Vol. 2. P. 493–508.

  10. Hall J.D., Carr N.A., Hart J.C. Cache and bandwidth aware matrix multiplication on the GPU. URL: http://graphics.cs.illinois.edu/sites/default/files/UIUCDCS-R-2003-2328.pdf.

  11. Horn D. Stream reduction operations for GPGPU applications. GPU Gems. 2006. Vol. 2. P. 573–589.

  12. Sosutha Sa., Mohana Db. Heterogeneous parallel computing using CUDA for chemical process. Procedia Computer Science. 2015. Vol. 47. P. 237–246. https://doi.org/10.1016/ j.procs.2015.03.203.
© 2020 Kibernetika.org. All rights reserved.