Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
UDC 519.6
M.R. Petryk1, I.V. Boyko2, A.M. Khimich3, M.М. Petryk4


1 Ternopil Ivan Puluj National Technical University,
Ternopil, Ukraine

mykhaylo_petryk@tntu.edu.ua

2 Ternopil Ivan Puluj National Technical University,
Ternopil, Ukraine

boyko.i.theory@gmail.com

3 V.M. Glushkov Institute of Cybernetics, National Academy
of Sciences of Ukraine, Kyiv, Ukraine

khimich505@gmail.com

4 Ternopil Ivan Puluj National Technical University,
Ternopil, Ukraine

mashapetryk@gmail.com

HIGH-PERFORMANCE CALCULATING SUPERCOMPUTER TECHNOLOGIES
OF SIMULATION OF NANOPOROUS SYSTEMS WITH FEEDBACK FOR ADSORPTION
GAS PURIFICATION

Abstract. High-performance methods and computer technologies for modeling of non-isothermal gas adsorption in nanoporous cyber feedback systems are based on the Heaviside operating method and Landau’s linearization approach to Langmuir’s nonlinear adsorption equilibrium using the decomposition in a convergent series at the temperature transition point with subsequent efficient parallelization of the model over a small parameter are developed. The results of numerical experiments based on high-speed parallel computations on multicore computers are presented.

Keywords: nanoporous feedback systems, adsorption and desorption of gases, Langmuir adsorption equilibrium function, Heaviside operational method.



FULL TEXT

REFERENCES

  1. Puertolas B., Navarro M.V., Lopez J.M., Murillo R., Mastral A.M., Garcia T. Modelling the heat and mass transfers of propane onto a ZSM-5 zeolite. Separation and Purification Technology. 2012. Vol. 86. P. 127–136. https://doi.org/10.1016/j.seppur.2011.10.036.

  2. Krisnha R., Van Baten J.M. Investigating the non-idealities in adsorption of CO 2 -bearing mixtures in cation-exchanged zeolites. Separation and Purification Technology. 2018. Vol. 206. P. 208–217. https://doi.org/10.1016/j.seppur.2018.06.009.

  3. Kanellopoulos N.K. Nanoporous materials: advanced techniques for characterization, modeling, and processing. London: CRC Press, 2011. 564 p.

  4. Santander J., Conner W.C., Jobic H., Auerbach S.M. Simulating microwave-heated open systems: tuning competitive sorption in zeolites. J. Phys. Chem. B. 2009. Vol. 113, N 42. P. 13776–13781. https://doi.org/10.1021/jp902946g.

  5. Hammond K.D., Conner W.C. Chapter one — analysis of catalyst surface structure by physical sorption. Advances in Catalysis. 2013. Vol. 56. P. 1–101. https://doi.org/10.1016/ B978-0-12-420173-6.00001-2.

  6. Krger J., Ruthven D., Theodorou D. Diffusion in nanoporous materials. Hoboken: John Wiley & Sons, 2012. 902 p.

  7. Karge H.G., Weitcamp J. Adsorption and diffusion. Berlin: Springer, 2008. 400 p.

  8. Krishna R. Thermodynamically consistent methodology for estimation of diffusivities of mixtures of guest molecules in microporous materials. ACS Omega. 2019. Vol. 4, N 8. P. 13520–13529. https://doi.org/10.1021/acsomega.9b01873.

  9. Petryk М., Leclerc S., Canet D., Fraissard J. Modeling of gas transport in a microporous solid using a slice selection procedure: Application to the diffusion of benzene in ZSM5. Catalysis Today. 2008. Vol. 139, N 3. P. 234–240. https://doi.org/10.1016/j.cattod.2008.05.034.

  10. Leclerc S., Petryk M., Canet D., Fraissard J. Competitive diffusion of gases in a zeolite using proton NMR and slice selection procedure. Catalysis Today. 2012. Vol. 187, N 1. P.104–107. https:// doi.org/10.1016/j.cattod.2011.09.007.

  11. Petryk M., Leclerc S., Canet D., Sergienko I.V., Deineka V.S., Fraissard J. Competitive diffusion of gases in a zeolite bed: NMR and slice procedure, modelling and identification of parameters. J. Phys. Chem. C. 2015. Vol. 119, N 47. P. 26519–26525. https://doi.org/10.1021/acs.jpcc.5b07974.

  12. Sergienko I.V., Petryk M.R., Leclerc S., Fraissard J. Highly efficient methods of the identification of competitive diffusion parameters in heterogeneous media of nanoporous particles. Cybernetics and Systems Analysis. 2015. Vol. 51, N 4. P. 529–546. https://doi.org/10.1007/s10559-015-9744-7.

  13. Petryk M., Ivanchov M., Leclerc S., Canet D., Fraissard J. Competitive adsorption and diffusion of gases in a microporous solid. In: Zeolites — New Challenges. Margeta K., Farkas A. (Eds.). London: IntecOpen, 2019. P. 1–23. URL: https://www.intechopen.com/online-first/competitive- adsorption-and-diffusion-of-gases-in-a-microporous-solid.

  14. Petryk M.R., Khimich A.N., Petryk M.M. Simulation of adsorption and desorption of hydrocarbons in nanoporous catalysts of neutralization systems of exhaust gases using nonlinear Langmuir isotherm. Journal of Automation and Information Sciences. 2018. Vol. 50, N 10. P. 18–33. https://doi.org/10.1615/JAutomatInfScien.v50.i10.20.

  15. Petryk M.R., Khimich A., Petryk M.M., Fraissard J. Experimental and computer simulation studies of dehydration on microporous adsorbent of natural gas used as motor fuel. Fuel. 2019. Vol. 239. P. 1324–1330. https://doi.org/10.1016/j.fuel.2018.10.134.

  16. Мykhalyk D., Petryk M., Petryk M.M., Petryk O., Mudryk I. Mathematical modeling of hydrocarbons adsorption in nanoporous catalyst media using nonlinear Langmuir’s isotherm using activation energy. Proc. 9th International Conference on Advanced Computer Information Technologies (ACIT’2019) (5–7 June 2019, Budejovice, Czech Republic). Budejovice, 2019. P. 72–75.

  17. Khimich O.M., Petryk M.R., Mykhalyk D.M., Boyko I.V., Popov O.V., Sidoruk V.A. Methods of mathematical modeling and identification of complex processes and systems based on high-performance computing [in Ukrainian]. Kyiv: Publishing House of the National Academy of Sciences of Ukraine, 2019. 190 p.

  18. Landau L.D. To the theory of phase transitions. Journal of Experimental and Theoretical Physics. 1937. Vol. 7. P. 19–32.

  19. Prudnikov A.P., Brychkov Yu.A., Marychev O.I. Integrals and series. Additional chapters [in Russian]. Moscow: Nauka, 1986. 800 p.

  20. Lavrent'ev M.A., Shabat B.V. Methods of the theory of functions of a complex variable. Moscow: Nauka, 1973. 749 p.
© 2020 Kibernetika.org. All rights reserved.