Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
UDC 517.9
S.I. Lyashko1, V.H. Samoilenko2, Yu.I. Samoilenko3, N.I. Lyashko4


1 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

lyashko.serg@gmail.com

2 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

valsamyul@gmail.com

3 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

yusam@univ.kiev.ua

4 V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine

dept165@insyg.kiev.ua; lyashko.natali@gmail.com

ASYMPTOTIC STEP-LIKE SOLUTIONS
TO THE KORTEWEG–de VRIES EQUATION WITH VARIABLE
COEFFICIENTS AND A SMALL PARAMETER AT THE HIGHEST DERIVATIVE

Abstract. The paper deals with the Korteweg–de Vries equation with variable coefficients and a small parameter of the first degree at the highest derivative. The notion of an asymptotic solution of a step type is proposed. By means of the non-linear WKB technique, an algorithm for constructing such solutions is proposed and justified. The order, on the small parameter, of the asymptotic accuracy with which the constructed approximate solution satisfies the given equation is established.

Keywords: Korteweg–de Vries equation with variable coefficients, soliton-like solutions, asymptotic solutions, singular pertubation.



FULL TEXT

REFERENCES

  1. Lyashko I.I., Lyashko S.I., Semenov V.V. Control of pseudo-hyperbolic systems by concentrated impacts. Journal of Automation and Information Sciences. 2000. Vol. 32, N 12. P. 23–36. https://doi.org/10.1615/JAutomatInfScien.v32.i12.40.

  2. Lyashko S.I., Nomirovskij D.A., Sergienko T.I. Trajectory-final controllability in hyperbolic and pseudo-hyperbolic systems with generalized actions. Cybernetics and System Analysis. 2001. Vol. 37, N 5. P. 756–763. https://doi.org/10.1023/a:1013871026026.

  3. Whitham G.B. Linear and nonlinear waves. New Jersey: John Wiley & Sons, 1999. 636 p. https://doi.org/10.1002/9781118032954.

  4. Newel A.C. Solitons in mathematics and physics. SIAM: Philadelphia, 1985. 260 p.

  5. Selezov I.T. Diffraction of elastic waves by a sphere in the semi-bounded region. Cybernetics and System Analysis. 2019. Vol. 55, N 3. P. 393–399. https://doi.org/10.1007/s10559-019-00146-3.

  6. Davydov A.S. Solitons in biology. In: Modern Problems in Condensed Matter Sciences. Ch. 1. Amsterdam: North-Holland Physics Publishing, 1986. Vol. 17. P. 1–51. https://doi.org/10.1016/ B978-0-444-87002-5.50007-2.

  7. Haus H.A., Wong W.S. Solitons in optical communications. Reviews of Modern Physics. 1996. Vol. 68, N 2. P. 423–444. https://doi.org/10.1103/RevModPhys.68.423.

  8. Zabusky N.J., Kruskal M.D. Interaction of solitons in a collisionless plasma and recurrence of initial states. Phys. Review Lett. 1965. Vol. 15. P. 240–243. http://dx.doi.org/10.1103/PhysRevLett.15.240.

  9. Blacmore D., Prykarpatsky A.K., Samoylenko V.H. Nonlinear dynamical systems of mathematical physics. Spectral and integrability analysis. Singapore: World Scientific, 2011. 564 p.

  10. Zadiraka V.K. Using reserves of computing optimization to solve complex problems. Cybernetics and Systems Analysis. 2019. Vol. 55. N 1. P. 40–54. https://doi.org/10.1007/s10559-019-00111-0.

  11. Galba E.F., Deineka V.S., Sergienko I.V. Weighted pseudoinverses and weighted normal pseudosolutions with singular weights. Computational Mathematics and Mathematical Physics. 2009. Vol. 49, N 8. P. 1281–1297. https://doi.org/10.1134/S0965542509080016.

  12. Pokhozhaev S.I. On the singular solutions of the Korteweg-de Vries equation. Mathematical Notes. 2010. Vol. 88, N 5. P. 741–747. https://doi.org/10.1134/S0001434610110131.

  13. Novikov S.P., Manakov S.V., Pitaevskii L.P., Zakharov V.E. Theory of solitons. The inverse scattering method. Springer US, 1984. 288 p.

  14. Nakonechnyi O.G., Kapustian O.A., Chikrii A.O. Approximate guaranteed mean square estimates of functionals on solutions of parabolic problems with fast oscillating coefficients under nonlinear observations. Cybernetics and Systems Analysis. 2019. Vol. 55, N 5. P. 785–795. https://doi.org/10.1007/s10559-019-00189-6.

  15. Ji J., Zhang L., Wang L. et al. Variable coefficient KdV equation with time-dependent variable coefficient topographic forcing term and atmospheric blocking. Advance Difference Equation. 2019. Vol. 320. https://doi.org/10.1186/s13662-019-2045-0.

  16. Maslov V.P., Omel’yanov G.A. Geometric asymptotics for PDE. I. Providence: American Mathematical Society, 2001. 243 p.

  17. Prikazchikov V.G., Khimich A.N. Asymptotic estimates of the accuracy of eigenvalues of fourth order elliptic operator with mixed boundary conditions. Cybernetics and Systems Analysis. 2017. Vol. 53, N 3. P. 358–365. https://doi.org/10.1007/s10559-017-9935-5.

  18. Samoilenko V.Hr., Samoilenko Yu.I. Asymptotic expansions for one-phase soliton-type solutions of the Korteweg–de Vries equation with variable coefficients. Ukrainian Mathematical Journal. 2005. Vol. 57, N 1. P. 132–148.https://doi.org/10.1007/s11253-005-0176-9.

  19. Samoilenko V.Hr., Samoilenko Yu.I. Asymptotic m-phase soliton-type solutions of a singularly perturbed Korteweg-de Vries equation with variable coefficients. Ukrainian Mathematical Journal. 2012. Vol. 64, N 7. P. 1109–1127. https://doi.org/10.1007/s11253-012-0702-5.

  20. Samoilenko V.H., Samoilenko Yu.I., Limarchenko V.O., Vovk V.S., Zaitseva K.S. Asymptotic solutions of soliton type of the Korteweg-de Vries equation with variable coefficients and singular perturbation. Mathematical Modeling and Computing. 2019. Vol. 6, N 2. P. 374–384. https://doi.org/10.23939/mmc2019.02.374.

  21. Samoilenko V.Hr., Samoilenko Yu.I. Existence of a solution to the inhomogeneous equation with the one-dimensional Schrodinger operator in the space of quickly decreasing functions. Journal of Mathematical Sciences. 2012. Vol. 187, N 1. P. 70–76. https://doi.org/10.1007/s10958-012-1050-6.
© 2020 Kibernetika.org. All rights reserved.