Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 519.6
M.R. Petryk1, I.V. Boyko2, O.M. Khimich3, M.М. Petryk4


1 Ternopil Ivan Puluj National Technical University,
Ternopil, Ukraine

mykhaylo_petryk@tntu.edu.ua

2 Ternopil Ivan Puluj National Technical University,
Ternopil, Ukraine

boyko.i.theory@gmail.com

3 V.M. Glushkov Institute of Cybernetics,
National Academy of Sciences of Ukraine, Kyiv, Ukraine

khimich505@gmail.com

4 Ternopil Ivan Puluj National Technical University,
Ternopil, Ukraine

mashapetryk@gmail.com

HIGH-PERFORMANCE SUPERCOMPUTER TECHNOLOGIES OF SIMULATION AND IDENTI-
FICATION OF NANOPOROUS SYSTEMS WITH FEEDBACK FOR n-COMPONENT COMPETI-
TIVE ADSORPTION

Abstract. High-performance supercomputer computing technologies have been developed to model and identify the parameters of complex n-component competitive adsorption processes in nanoporous cybersystems with feedback. Using the Laplace transform and the Heaviside operating method with the decomposition of a nonlinear system with Langmuir-type adsorption equilibrium conditions, an effective parallelization of the vector components of the model solution is proposed. The results of numerical experiments based on parallel computations using multi-core computers are presented.

Keywords: high-performance parallel computations, nanoporous cybersystems with feedback, competent gas adsorption, Langmuir adsorption equilibrium function, Laplace integral transformation, Heaviside operating method.



FULL TEXT

REFERENCES

  1. Puertolas B., Navarro M.V., Lopez J.M., Murillo R., Mastral A.M., Garcia T. Modelling the heat and mass transfers of propane onto a ZSM-5 zeolite. Separation and Purification Technology. 2012. Vol. 86. P. 127–136. https://doi.org/10.1016/j.seppur.2011.10.036.

  2. Kanellopoulos N.K. Nanoporous materials: advanced techniques for characterization, modeling, and processing. London: CRC Press, 2011. 564 p.

  3. Hammond K.D., Conner W.C. Chapter one – analysis of catalyst surface structure by physical sorption. Advances in Catalysis. 2013. Vol. 56. P. 1–101. https://doi.org/10.1016/B978-0-12-420173-6.00001-2.

  4. Krger J., Ruthven D., Theodorou D. Diffusion in nanoporous materials. Hoboken: John Wiley & Sons, 2012. 902 p.

  5. Krisnha R., Van Baten J.M. Investigating the non-idealities in adsorption of CO2-bearing mixtures in cation-exchanged zeolites. Separation and Purification Technology. 2018. Vol. 206. P. 208–217. https://doi.org/10.1016/j.seppur.2018.06.009.

  6. Lecler S., Petryk M., Canet D., Fraissard J. Competitive diffusion of gases in a zeolite using proton NMR and slice selection procedure. Catalysis Today. 2012. Vol. 187, N 1. P. 104–107. https:// doi.org/10.1016/j.cattod.2011.09.007.

  7. Petryk М., Leclerc S., Canet D., Fraissard J. Modeling of gas transport in a microporous solid using a slice selection procedure: Application to the diffusion of benzene in ZSM5. Catalysis Today. 2008. Vol. 139, N 3. P. 234–240. https://doi.org/10.1016/j.cattod.2008.05.034.

  8. Petryk M., Leclerc S., Canet D., Sergienko I.V., Deineka V.S., Fraissard J. Competitive diffusion of gases in a zeolite bed: NMR and slice procedure, modelling and identification of parameters. J. Phys. Chem. C. 2015. Vol. 119, N 47. P. 26519–26525. https://doi.org/10.1021/acs.jpcc.5b07974.

  9. Sergienko I.V., Petryk M.R., Leclerk S., Fraissard J. Highly efficient methods of the identification of competitive diffusion parameters in heterogeneous media of nanoporous particles. Cybernetics and Systems Analysis. 2015. Vol. 51, N 4. P. 529–546. https:/doi.org/10.1007/s10559-015-9744-7.

  10. Petryk M.R., Boyko I.V., Khimich O.M., Petryk M.M. High-performance supercomputer technologies of simulation of nanoporous feedback systems for adsorption gas purification. Cybernetics and Systems Analysis. 2020. Vol. 56, N 5. P. 835–847. https://doi.org/10.1007/ s10559-020-00304-y.

  11. Petryk M., Ivanchov M., Leclerc S., Canet D., Fraissard J. Competitive adsorption and diffusion of gases in a microporous solid. Zeolites — New Challenges. Margeta K., Farkas A. (Eds.). London: IntecOpen, 2019. P. 1–23. https:/doi.org/10.5772/intechopen.77482.

  12. Khimich O.M., Petryk M.R., Mikhalyk D.M., Boyko I.V., Popov O.V., Sidoruk V.A. Methods of mathematical modeling and identification of complex processes and systems based on high-performance computing. Kyiv: Vyd-vo NAN Ukrayiny, 2019. 190 p.

  13. Petryk M., Khimich A., Petryk M.M., Fraissard J. Experimental and computer simulation studies of dehydration on microporous adsorbent of natural gas used as motor fuel. Fuel. 2019. Vol. 239. P. 1324–1330. https://doi.org/10.1016/j.fuel.2018.10.134.

  14. Мykhalyk D., Petryk M., Petryk M.M., Petryk O., Mudryk I. Mathematical modeling of hydrocarbons adsorption in nanoporous catalyst media using nonlinear Langmuir’s isotherm using activation energy. Proc. 9th International Conference on Advanced Computer Information Technologies (ACIT’2019) (5–7 June 2019, Budejovice, Czech Republic). Budejovice, 2019. P. 72–75.

  15. Lavrent'ev M.A., Shabat B.V. Methods of the theory of functions of a complex variable. Moscow: Nauka, 1973. 749 p.

  16. Nemytskii V.V., Stepanov V.V. Qualitative theory of differential equations (New Edition). New York: Dover Publications, Inc., 1990. 552 p.

  17. Microsoft Visual Studio C++ documentation. URL: https://docs.microsoft.com/en-us/cpp/parallel/ parallel-programming-in-visual-cpp?view=vs-2019 [Accessed Nov. 12, 2019].




© 2021 Kibernetika.org. All rights reserved.