UDC 519.85
1 A. Pidgorny Institute of Mechanical Engineering Problems, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
yustoyan19@gmail.com
|
2 A. Pidgorny Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
tarom27@yahoo.com
|
3 A. Pidgorny Institute of Mechanical Engineering Problems, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
pankratov2001@yahoo.com
|
4 V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
stetsyukp@gmail.com
|
5 A. Pidgorny Institute of Mechanical Engineering Problems, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
urikpostg@gmail.com
|
|
SPARSE BALANCED DISTRIBUTION OF SPHERICAL VOIDS
IN THREE-DIMENSIONAL DOMAINS
Abstract. The paper considers the optimization problem of generating spherical voids in
three-dimensional domains bounded by cylindrical and spherical surfaces and planes.
The problem is reduced to the problem of arranging spherical objects in a composite container,
taking into account constraints on “sparseness” of the objects and balancing conditions (a location of the gravity center of the system).
A mathematical model in the form of a nonlinear programming problem is provided.
A fast method of finding allowable solutions based on the balanced homothetic transformations of 3D objects and
methods of finding locally optimal solutions using the decomposition algorithm and r -algorithm are proposed.
The results of numerical experiments are given.
Keywords: sparse layout, spherical objects, phi-function, nonlinear programming, r -algorithm.
FULL TEXT
REFERENCES
- Blyuss O., Koriashkina L., Kiseleva Е., Molchanov R. Optimal placement of irradiation sources in the planning of radiotherapy: mathematical models and methods of solving. Computational and Mathematical Methods in Medicine. 2015. Vol. 2015, Article ID 142987. http://doi.org/10.1155/ 2015/142987.
- Ungson Y., Burtseva L., Garcia-Curiel E., Valdez-Salas B., Flores-Rios B.L., Werner F., Petranovskii V. Filling of irregular channels with round cross-section: modeling aspects to study the properties of porous materials. Materials. 2018. Vol. 11, N 10. P. 1901.
- Fasano G., Pinter J.D. (Eds.) Modeling and optimization in space engineering — State of the art and new challenges. Springer International Publishing, 2019. 492 p.
- Gardan J. Additive manufacturing technologies: state of the art and trends. Int. J. Prod. Res. 2016. Vol. 54, Iss. 10. P. 3118–3132.
- Gebhardt A., Kessler J., Thurn L. 3D printing: Understanding additive manufacturing. Hanser Publications, 2019. 204 p.
- Mahesh M., Lane B., Donmez M., Feng S., Moylan S. A review on measurement science needs for real-time control of additive manufacturing metal powder bed fusion processes. Int. J. Prod. Res. 2017. Vol. 55, Iss. 5. P. 1400–1418.
- Mehrpouya M., Dehghanghadikolaei A., Fotovvati B., Vosooghnia A., Sattar S. Emamian, Annamaria Gisario. The potential of additive manufacturing in the Smart Factory Industrial 4.0: A review. Appl. Sci. 2019. Vol. 9, N 18. P. 3865–3899.
- Leao A., Toledo F., Oliveira J., Carravilla M., Alvarez-ValdБs R. Irregular packing problems: A review of mathematical models. Eur. J. Oper. Res. 2019. Vol. 282, Iss. 3. P. 803–822. http://doi.org/10.1016/ j.ejor.2019.04.045.
- Birgin E., Lobato R. A matheuristic approach with nonlinear subproblems for large-scale packing of ellipsoids. Eur. J. Oper. Res. 2019. Vol. 272 (2). P. 447–464.
- Kallrath J. Packing ellipsoids into volume-minimizing rectangular boxes. J. Global Optimiz. 2017. Vol. 67, Iss. 1–2. P. 151–185.
- Araujo L., Ozcan E., Atkin J., Baumers M. Analysis of irregular three-dimensional packing problems in additive manufacturing: a new taxonomy and dataset. Int. J. Prod. Res. 2019. Vol. 57, Iss. 18. P. 5920–5934. https://doi.org/10.1080/00207543.2018.1534016.
- Lee M., Fang Q., Cho Y., Ryu J., Liu L., Kim D. Support-free hollowing for 3D printing via Voronoi diagram of ellipses. Computer-Aided Design. 2018. Vol. 101. P. 23–26.
- Duriagina Z., Lemishka I., Litvinchev I., Marmolejo J.A., Pankratov A., Romanova T., Yaskov G. Optimized filling of a given cuboid with spherical powders for additive manufacturing. Journal of the Operations Research Society of China. 2020. http://doi.org/10.1007/s40305-020-00314-9.
- Romanova T.E., Stetsyuk P.I., Chugay A.M., Shekhovtsov S.B. Parallel computing technologies for solving optimization problems of geometric design. Cybernetics and Systems Analysis. 2019. Vol. 55, N 6. P. 894–904. https://doi.org/10.1007/s10559-019-00199-4.
- Romanova T., Stoyan Y., Pankratov A., Litvinchev I., Avramov K., Chernobryvko M., Yanchevskyi I., Mozgova I., Bennell J. Optimal layout of ellipses and its application for additive manufacturing. International Journal of Production Research. 2021. Vol. 59, Iss. 2. P. 560–575. https://doi.org/ 10.1080/00207543.2019.1697836.
- Yanchevskyi I., Lachmayer R. Mozgova I., Lippert R-B., Yaskov G., Romanova T., Litvinchev I. Circular packing for support-free structures. EAI Endorsed Transactions on Energy Web. 2020. Iss. 30. http://dx.doi.org/10.4108»/»eai.13-7-2018.164561.
- Romanova T., Stoyan Y., Pankratov A., Litvinchev I., Yanchevsky I., Mozgova I. Optimal packing in additive manufacturing. IFAC-PapersOnLine. 2019. Iss. 13. P. 2758–2763. http://doi.org/10.1016/ j.ifacol.2019.11.625.
- Grebennik I.V., Kovalenko A.A., Romanova T.E., Urniaieva I.A., Shekhovtsov S.B. Combinatorial configurations in balance layout optimization problems. Cybernetics and Systems Analysis. 2018. Vol. 54, N 2. P. 221–231. https://doi.org/10.1007/s10559-018-0023-2.
- Romanova T., Pankratov A., Litvinchev I., Plankovskyy S., Tsegelnyk Y., Shypul O. Sparsest packing of two-dimensional objects. International Journal of Production Research. 2020. https://doi.org/10.1080/ 00207543.2020.1755471.
- Romanova T., Litvinchev I., Pankratov A. Packing ellipsoids in an optimized cylinder. Eur. J. Oper. Res. 2020. Vol. 285, Iss. 2. P. 429–443. https://doi.org/10.1016/j.ejor.2020.01.051.
- Stoyan Y., Yaskov G., Romanova T., Litvinchev I., Yakovlev S., Cant J.M.V. Optimized packing multidimensional hyperspheres: a unified approach. Mathematical Biosciences and Engineering. 2020. Vol. 17, Iss. 6. P. 6601–6630. http://doi.org/10.3934/mbe.2020344.
- Pankratov A., Romanova T., Litvinchev I. Packing oblique 3D objects. Mathematics. 2020. Vol. 8 (7), P. 1130. https://doi.org/10.3390/math8071130.
- Romanova T., Stoyan Y., Pankratov A., Litvinchev I., Plankovskyy S., Tsegelnyk Y., Shypul O. Sparsest balanced packing of irregular 3D objects in a cylindrical container. Eur. J. Oper. Res.. 2020. Vol. 201, Iss. 1. P. 84–100. https://doi.org/10.1016/j.ejor.2020.09.021.
- Stetsyuk P.I. r -algorithms and ellipsoids. Kibernetika i sistemnyj analiz. 1996. Vol. 32, N 1. P. 113–134.
- Shor N.Z., Stetsyuk P.I. Using a modification of the r -algorithm to find the global minimum of polynomial functions. Kibernetika i sistemnyj analiz. 1997. Vol. 33, N 4. P. 28–49.
- Sergienko I.V., Stetsyuk P.I. About three scientific ideas of N.Z. Shor. Kibernetika i sistemnyj analiz. 2012. Vol. 48, N 1. P. 4–22.
- Stetsyuk P.I. Shor’s r -algorithms: theory and practice. Optimization Methods and Applications: In Honor of the 80th Birthday of Ivan V. Sergienko. Butenko S., Pardalos P.M, Shylo V. (Eds). Springer International Publishing, 2017. P. 495–520.
- Stetsyuk P.I. Theory and software implementations of Shor's r -algorithms. Kibernetika i sistemnyj analiz. 2017. Vol. 53, N 5. P. 43–57.
- Stetsyuk P.I. Computer program "Octave-program ralgb5a:
r(α)-algorithm with adaptive step". Certificate of copyright registration for the work № 85010. Ukraine. Ministry of Economic Development and Trade. State Department of Intellectual Property. Registration Date 29.01.2019.