Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 330.115
Ermoliev Y.1, Zagorodny A.G.2, Bogdanov V.L.3, Ermolieva T.4,
Havlik P.5, Rovenskaya E.6, Komendantova N.7, Obersteiner M.8



1 International Institute for Applied Systems Analysis,
Laxenburg, Austria; V.M. Glushkov Institute
of Cybernetics of the NAS of Ukraine, Kyiv, Ukraine

ermoliev@iiasa.ac.at

2 Bogolyubov Institute for Theoretical Physics
of the NAS of Ukraine, Kyiv, Ukraine

Zagorodny@nas.gov.ua

3 S.P. Timoshenko Institute of Mechanics of the NAS of Ukraine, Kyiv, Ukraine

Bogdanov@nas.gov.ua

4 International Institute for Applied Systems Analysis,
Laxenburg, Austria

ermol@iiasa.ac.at

5 International Institute for Applied Systems Analysis,
Laxenburg, Austria

havlipt@iiasa.ac.at

6 International Institute for Applied Systems Analysis,
Laxenburg, Austria

rovenska@iiasa.ac.at

7 International Institute for Applied Systems Analysis,
Laxenburg, Austria

komendan@iiasa.ac.at

8 International Institute for Applied Systems Analysis,
Laxenburg, Austria

oberstei@iiasa.ac.at

ROBUST FOOD–ENERGY–WATER–ENVIRONMENTAL SECURITY MANAGEMENT:
STOCHASTIC QUASIGRADIENT PROCEDURE FOR LINKAGE OF DISTRIBUTED
OPTIMIZATION MODELS UNDER ASYMMETRIC INFORMATION AND UNCERTAINTY

Abstract. The paper presents a consistent algorithm for regional and sectoral distributed models’ linkage and optimization under asymmetric information based on iterative stochastic quasigradient (SQG) solution procedure of, in general, non-smooth nondifferentiable optimization. The procedure is used for linking individual sectoral and regional models for integrated and interdependent food–energy–water–environmental security analysis and management.

Keywords: decision support, asymmetric information, linkage, SQG solution procedure, non-smooth optimization, subgradient, integrated modeling, food–energy–water–environmental nexus.


FULL TEXT

REFERENCES

  1. Ermoliev Y. Stochastic quasigradient methods in minimax problems. In: Encyclopedia of Optimization. Floudas C.A., Pardalos P.M. (Eds.). New York: Springer-Verlag, 2009. P. 3813–3818.

  2. Ermoliev Y. Two-stage stochastic programming: quasigradient method. In: Encyclopedia of Optimization. Floudas C.A., Pardalos P.M. (Eds.). New York: Springer-Verlag, 2009. P. 3955–3959.

  3. Ermoliev Y. Stochastic quasigradient methods: applications. In: Encyclopedia of Optimization. Floudas C.A., Pardalos P.M. (Eds.). New York: Springer-Verlag, 2009. P. 3807–3813.

  4. Ermoliev Y. Stochastic quasigradient methods. In: Encyclopedia of Optimization. Floudas C.A., Pardalos P.M. (Eds.). New York: Springer-Verlag, 2009. P. 3801–3807.

  5. Ermoliev Y., Norkin V. On nonsmooth and discontinuous problems of stochastic systems optimization. European Journal of Operational Research. 1997. Vol. 101, Iss. 2. P. 230–244. https://doi.org/10.1016/S0377-2217(96)00395-5.

  6. Ermolieva T., Ermoliev Y., Rovenskaya E., Obersteiner M. Two-stage nonsmooth stochastic optimization and iterative stochastic quasigradient procedures for robust estimation, machine learning and decision making. In: Resilience in the Digital Age. Roberts F.S., Sheremet I. (Eds.). Springer International Publishing, 2021. P. 45–74.

  7. Food-Energy-Water NEXUS for Sustainable Development: Integrated Modeling and Robust management. Zagorodny A.G., Ermoliev Yu.M., Bogdanov V.L., Ermolieva T. (Eds.). Kyiv: PH “Akademperiodyka”. 2020. 446 p. URL: https://ru.calameo.com/read/0031683726252f5034d74.

  8. Zagorodny A.G., Ermoliev Y., Bogdanov V.L., Kostyuchenko Y.V., Ermolieva. T. Integrated robust management of food-energy-water-land use nexus for sustainable development. In: Food-Energy-Water NEXUS for Sustainable Development: Integrated Modeling and Robust management. Zagorodny A.G., Ermoliev Yu.M., Bogdanov V.L., Ermolieva T. (Eds.). Kyiv: PH “Akademperiodyka”, 2020. P. 237–250.

  9. Ermoliev Y., Zagorodny A.G., Bogdanov V.L., Ermolieva T., Havlik P., Obersteiner M., Rovenskaya E. Linking distributed sectorial and regional optimization models under asymmetric information: towards robust food-water-energy-environmental nexus. In: Food-Energy-Water NEXUS for Sustainable Development: Integrated Modeling and Robust management. Zagorodny A.G., Ermoliev Yu.M., Bogdanov V.L., Ermolieva T. (Eds.). Kyiv: PH “Akademperiodyka”, 2020. P. 303–323.

  10. Ermoliev Y., Zagorodny A.G., Bogdanov V.L., Knopov P.S., Borodina O.M., Ermolieva T., Rovenskaya E., Kostjuchenk Y.V., et al. Integrated robust management of NEXUS between agricultural, water, energy economic sectors: consistent algorithms for linking distributed models. Proc. 6th International Conference on Mathematical Modeling, Optimization and Information Technologies (12–16 November, 2018, Kischinev, Moldova). Kischinev, 2018. P. 108–112.

  11. Gao J., Xu X., Cao G., Ermoliev Y.M., Ermolieva T.Y., Rovenskaya E.A. Optimizing regional food and energy. Sustainability. 2018. Vol. 10, Iss. 6. 1689. https://doi.org/10.3390/su10061689.

  12. Ermoliev Y. Production under limited water availability through integrated modeling. Some problems of linkage systems. IIASA Working Paper WP-80-102. Laxenburg, Austria: Int. Institute for Applied Systems Analysis (IIASA), 1980. 15 p. URL: http://pure.iiasa.ac.at/id/eprint/1367/1/WP-80-102.pdf.

  13. Arrow K.J. Studies in linear and nonlinear programming. Stanford, CA: Stanford University Press, 1958. 229 p.

  14. Bertsekas D. Nonlinear programming. Belmont: Atlanta Scientific, 1999. 791 p.

  15. Ermoliev Y. Methods of stochastic programming. Moscow: Nauka, 1976. 240 p. (In Russian).

  16. Rockafeller R.T. The theory of subgradient and its application to problems of optimization: convex and nonconvex functions. Berlin: Helderman Verlag, 1981. 107 p.

  17. Ermoliev Y., Robinson S., Rovenskaya E., Ermolieva T. Integrated catastrophic risk management: Robust balance between Ex-ante and Ex-post measures. SIAM News. 2018. Vol. 51, Iss. 6. P. 4.

  18. Ermoliev Y., Ermolieva T., MacDonald G., Norkin V. Stochastic optimization of insurance portfolios for managing exposure to catastrophic risks. Annals of Operations Research. 2000. Vol. 99, Iss. 1. P. 207–225.

  19. Ermolieva T., Ermoliev Y., Fischer G., Galambos I. The role of financial instruments in integrated catastrophic flood management. Multinational Finance Journal. 2003. Vol. 7, Iss. 3–4. P. 207–230.

  20. Ermoliev Y., von Winterfeldt D. Systemic risk and security management. In: Managing safety of heterogeneous systems: Decisions under uncertainty and risks. Ermoliev Y., Makowski M., Marti K. (Eds.). New York: Springer, 2012. P. 19–49. URL: link.springer.com/chapter/10.1007/ 978-3-642-22884-1_2.

  21. Ermolieva T., Ermoliev Y. Catastrophic risk management: flood and seismic risk case studies. In: Applications of Stochastic Programming. MOS-SIAM Series on Optimization. Wallace S.W., Ziemba W.T. (Eds.). 2005. P. 425–444.

  22. Ermoliev Y., Gaivoronski A. Stochastic quasigradient methods for optimization of discrete event systems. Annals of Operations Research. 1992. Vol. 39, Iss. 1. P. 1–39. URL: https://link.springer.com/article/10.1007%2FBF02060934.

  23. Gaivoronski A. Convergence properties of backpropagation for neural nets via theory of stochastic guasigradient methods. Part 1. Optimization Methods and Software. 1994. Vol. 4, Iss. 2. P. 117–134.

  24. Ermoliev Y., Michalevich M., Uteuliev N.U. Economic modeling of international water use (The case of the Aral Sea Basin). Cybernetics and Systems Analysis. 1994. Vol. 30, N 4. P. 523–527. https://doi.org/10.1007/BF02366562.

  25. Ermoliev Y., Wets R.J-B. Numerical techniques for stochastic optimization. Heidelberg: Springer-Verlag, 1988. XV, 571 p.

  26. Dantzig G.B., Wolfe P. The decomposition principle for linear programming. Econometrica. 1961. Vol. 29, N 4. P. 767–778.

  27. Kim K., Nazareth J.L. The decomposition principle and algorithms for linear programming. Linear Algebra and Its Applications. 1991. Vol. 152. P. 119–133.




© 2022 Kibernetika.org. All rights reserved.