UDC 303.444
1 Central Scientific and Research Institute of Armaments and Military Equipment of the Armed Forces of Ukraine, Kyiv, Ukraine
kupchyn.artem@ukr.net
|
2 Central Scientific and Research Institute of the Armed Forces of Ukraine, Kyiv, Ukraine
komarvlad@ukr.net
|
3 Central Scientific and Research Institute of Armaments and Military Equipment of the Armed Forces of Ukraine, Kyiv, Ukraine
borohvostov@icloud.com
|
4 Central Scientific and Research Institute of Armaments and Military Equipment of the Armed Forces of Ukraine, Kyiv, Ukraine
nikolas200578@gmail.com
|
5 Hetman Petro Sahaidachnyi National Ground Forces Academy, Lviv, Ukraine
Kyprinenko@ukr.net
|
|
7 Central Scientific and Research Institute of the Armed Forces of Ukraine, Kyiv, Ukraine
bogdnr11@gmail.com
|
|
DETERMINING THE ACCURACY OF A FUZZY MODEL OF THE TECHNOLOGY FORESIGHT
Abstract. The article shows a way to determine the accuracy of prognostic models in the absence of experimental data to compare the simulation results. The developed neural network defines a class of technologies that is compared with the results of the fuzzy model. The accuracy of the model is determined by calculating the root-mean-square error of the simulation and correlation between the results of the fuzzy model and the neural network.
Keywords: technology foresight, modeling error, modeling accuracy, fuzzy logic, neural networks.
FULL TEXT
REFERENCES
- Dubovoi V.M., Kvetny R.N., Mikhalov O.I., Usov A.V. Modeling and optimization of systems [in Ukrainian]. Vinnytsia: PE "Edelweiss", 2017. 804 p.
- Kupchyn A., Sotnyk V. The model of disruptive technologies determination for defense sphere. Issues of Armament Technology. 2021. N 156 (1). P. 65–83. https://doi.org/10.5604/ 01.3001.0015.2529.
- Slyusar V.I., Sotnik V.V., Kupchin A.V., Shostak V.G. Breakthrough technologies in the defense sphere of Ukraine. Ozbroyennya ta viysʹkova tekhnika. 2020. Vol. 28, N 4. P. 13–23. https://doi.org/10.34169/2414-0651.2020.4(28).13-23.
- Sotnik V.V., Rasstrigin O.O., Kupchin A.V. Methods of selection of critical technologies. Suchasni informatsiyni tekhnolohiyi u sferi bezpeky ta oborony. 2020. N 1 (37). P. 67–76. http://doi.org/10.33099/2311-7249/2020-37-1-67-76.
- Tomashevsky V.M. Systems modeling [in Ukrainian]. Kyiv: BHV Publishing Group, 2005. 352 p.
- Gil M.M., Miller F.A., Brando T.R.S., Silva C.L.M. Mathematical models for prediction of temperature effects on kinetic parameters of microorganisms’ inactivation: tools for model comparison and adequacy in data fitting. Food Bioprocess Technol. 2017. N 10. P. 2208–2225. https://doi.org/10.1007/s11947-017-1989-x.
- Voje K.L. Assessing adequacy of models of phyletic evolution in the fossil record. Methods Ecol. Evol. 2018. Vol. 9, Iss. 12. P. 2402–2413. https://doi.org/10.1111/2041-210X.13083.
- Rammay M.H., Elsheikh A.H., Chen Y. Quantification of prediction uncertainty using imperfect subsurface models with model error estimation. Journal of Hydrology. 2019. Vol. 576. P. 764–-783. https://doi.org/10.1016/j.jhydrol.2019.02.056.
- Shcherbinina S.A., Klimko O.G., Marochko T.R. Application of economic and mathematical modeling for the analysis of industrial enterprise activity. Efektyvna ekonomika. 2019. N 6. https://doi.org/10.32702/2307-2105-2019.6.59.
- Ostapchuk V., Sova O., Shyshatskyi A. Development of a mathematical model of the functioning of multi-antenna radio communications with spectrally effective signals under the influence of destabilizing factors. ScienceRise. 2020. N 4. P. 40–45. https://doi.org/10.21303/ 2313-8416.2020.001393.
- Bilokur M.O. Functional display of weight values in an artificial neural network of certain properties in the evaluation of alternative weapons. Ozbroyennya ta viysʹkova tekhnika. 2020. N 2(26). P. 20–31. URL: https://cndiovt.com.ua/files/ovt/OVT_2(26).pdf.
- Ykseland N., H. A new model for technology foresight: Foresight periscope model (FPM). Proc. International Conference on Engineering, Technology and Innovation (ICE/ITMC) (27–29 June 2017, Madeira, Portugal). Madeira, 2017. P. 807–817. https://doi.org/ 10.1109/ICE.2017.8279967.
- Rohrbeck R., Kum M.E. Corporate foresight and its impact on firm performance: A longitudinal analysis. Technological Forecasting and Social Change. 2018. Vol. 129. P. 105–116. https://doi.org/10.1016/j.techfore.2017.12.013.
- Kirik V.V. Mathematical apparatus of piece intelligence in electric power systems [in Russian]. Kyiv: Polytechnic, 2019. 224 p.
- Shtovba S.D. Designing fuzzy systems using MATLAB [in Russian]. Moscow: Goryachaya liniya – Telekom, 2007. 288 p.
- Leonenkov A.V. Fuzzy modeling in MATLAB and fuzzyTECH [in Russian]. St. Petersburg: BHV-Petersburg, 2005. 736 p.
- Rotstein A.P. Intelligent identification technologies [in Russian]. Vinnytsia: Universum-Vinnytsia, 1999. 302 p.
- Slyusar V., Sotnyk V., Bondarchuk M., Kupchyn A., Bilokur M. Method for determining membership function based on equidistant points. Proc. International Conference of Specialized and Multidisciplinary Scientific Researches (11 December 2020, Amsterdam, The Netherlands). Amsterdam, 2020. Vol. 2. P. 27–30. http://doi.org/10.36074/11.12.2020.v2.07.
- Kupchin A.V., Komarov V.S., Borokhvostov I.V., Kuprinenko O.M., Sotnik V.V., Bilokur M.O., Oleksiyuk V.V. Technological foresight model based on fuzzy logic. Kibernetyka ta systemnyi analiz. 2021. Vol. 57, N 6. P. 149–161.
- Subbotin S.O. Neural networks: theory and practice [in Ukrainian]. Zhytomyr: O.O. Evenok, 2020. 184 p.
- Fishburn P. Theory of usefulness for decision making [in Russian]. Moscow: Nauka, 1978. 352 p.
- Matviychuk V.I., Hakobyan A.S. Approaches to the formation of an integrated indicator of financial stability of the university on the basis of the generalized function of Harrington's desirability. Ekonomika i orhanizatsiya upravlinnya. 2020. N 3(39). P. 65–80. https://doi.org/10.31558/2307-2318.2020.3.6.
- Slyusar V.I., Sotnik V.V., Kupchin A.V. Validation of the model of technological forecasting based on self-taught neural network. Proc. of the IV International Scientific and Practical Conference "Information Security and Computer Technology" (April 15-16, 2021, Kropyvnytskyi, Ukraine). Kropyvnytskyi, 2021. P. 31.