UDC 004.891.2:614.446
|
2 M.Ye. Zhukovsky National Aerospace University "Kharkiv Aviation Instituteт", Kharkiv, Ukraine
dichumachenko@gmail.com
|
5 M.Ye. Zhukovsky National Aerospace University "Kharkiv Aviation Instituteт", Kharkiv, Ukraine
svsyak7@gmail.com
|
|
INTELLIGENT DECISION SUPPORT SYSTEM FOR EPIDEMIOLOGICAL
DIAGNOSTICS. II. INFORMATION TECHNOLOGY DEVELOPMENT
Abstract. The article projects the components of the intelligent decision support system for epidemiological diagnostics and investigates their interaction with the user. The system includes a bank of models and machine learning methods, a bank of population dynamics models, visualization and reporting tools, and management decision-making unit. The concept of information technology to ensure biosafety of the population is provided. A model of specified information technology use cases is developed and a sequence diagram is constructed. A model of information technology components and ways of their deployment on a server are proposed.
Keywords: decision support system, information technology, epidemiological diagnostics, machine learning, population dynamics.
FULL TEXT
REFERENCES
- Bazilevych K.O., Chumachenko D.I., Hulianitskiy L.F., Meniailov I.S, Yakovlev S.V. Intelligent decision support system for epidemiological diagnostics. I. A concept of architecture design. Кібернетика та системний аналіз. 2022. Т. 58, № 3. С. 30–41.
- Yakovlev S., Bazilevych K., Chumachenko D., Chumachenko T., Hulianytskyi L., Meniailov I., Tkachenko A. The concept of developing a decision support system for the epidemic morbidity control. Proc. 3rd International Conference on Informatics & Data-Driven Medicine (19–21 November, 2020, Vxj, Sweden). Vxj, 2020. Vol. 2753. Р. 265–274.
- Singh D.E., Marinescu M.C., Guzmїn-Merino M., Durїn C., Delgado-Sanz C., Gomez-Barroso D., Carretero J. Simulation of COVID-19 propagation scenarios in the Madrid metropolitan area. Frontiers of Public Health. 2021. Vol. 9, 636023. https://doi.org/10.3389/ fpubh.2021.636023.
- Liu H., He S., Shen L., Hong J. Simulation-based study of COVID-19 outbreak associated with air-conditioning in a restaurant. Physics of Fluids. 2021. Vol. 33 (2), 023301. https://doi.org/10.1063/5.0040188.
- Msmali A., Zico M., Mechai I., Ahmadini A. Modeling and simulation: a study on predicting the outbreak of COVID-19 in Saudi Arabia. Discrete Dynamics in Nature and Society. 2021. Vol. 2021, 5522928. https://doi.org/10.1155/2021/5522928.
- Agosto A., Giudici P. A poisson autoregressive model to understand COVID-19 contagion dynamics. Risks. 2020. Vol. 8 (3), 77. https://doi.org/10.3390/risks8030077.
- Vagis A.A., Gupal A.M., Sergienko I.V. Determination of risk groups for the Covid-19 underlying deseases. Cybernetics and Systems Analysis. 2021. Vol. 57, N 2. P. 223–227. https://doi.org/10.1007/s10559-021-00347-9.
- Knopov P.S., Korkhin A.S. Statistical analysis of the dynamics of coronavirus cases using stepwise switching regression. Cybernetics and Systems Analysis. 2020. Vol. 56, N 6. P. 943–952. https://doi.org/10.1007/s10559-020-00314-w .
- Malkov E. Simulation of coronavirus disease 2019 (COVID-19) scenarios with possibility of reinfection. Chaos, Solitons and Fractals. 2020. Vol. 139, 110296. https://doi.org/10.1016/j.chaos.2020.110296.
- Schneider K.A., Ngwa G.A., Schwehm, M., Eichner L., Eichner M. The COVID-19 pandemic preparedness simulation tool: CovidSIM. BMC Infectious Diseases. 2020. Vol. 20, 859. https://doi.org/10.1186/s12879-020-05566-7.
- Ghaffarzadegan N. Simulation-based what-if analysis for controlling the spread of Covid-19 in universities. PLoS ONE. 2021. Vol. 16 (2), e0246323. https://doi.org/10.1371/journal.pone.0246323.
- Khan Z., Van Bussel F., Hussain F. A predictive model for Covid-19 spread — with application to eight US states and how to end the pandemic. Epidemiology and Infection. 2020. Vol. 148, e249. P. 1–13. https://doi.org/10.1017/S0950268820002423.
- Avila-Ponce de Leon U., Perez A.G.C., Avila-Vales E. An SEIARD epidemic model for COVID-19 in Mexico: Mathematical analysis and state-level forecast. Chaos, Solitons and Fractals. 2020. Vol. 140, 110165. https://doi.org/10.1016/j.chaos.2020.110165.
- Krak Iu., Barmak O., Radiuk P. Information technology for early diagnosis of pneumonia on individual radiographs. Proc. IDDM’2020: 3rd International Conference on Informatics & Data-Driven Medicine (19–21 November, 2020, Vxj, Sweden). Vxj, 2020. Vol. 2753. Р. 11–21.
- Gharakhanlou N.M., Hooshangi N. Spatio-temporal simulation of the novel coronavirus (COVID-19) outbreak using the agent-based modeling approach (case study: Urmia, Iran). Informatics in Medicine Unlocked. 2020. Vol. 20, 100403. https://doi.org/10.1016/j.imu.2020.100403.
- Kerr C.C., Stuart R.M., Mistry D., Abeysuriya R.G., Rosenfeld K., Hart G.R., et al. Covasim: An agent-based model of COVID-19 dynamics and interventions. PLoS Computational Biology. 2021. Vol. 17 (7), e1009149. https://doi.org/10.1371/journal.pcbi.1009149.
- Cuevas E. An agent-based model to evaluate the COVID-19 transmission risks in facilities. Computers in Biology and Medicine. 2020. Vol. 121, 103827. https://doi.org/10.1016/j.compbiomed.2020.103827.
- Truszkowska A., Behring B., Hasanyan J., Zino L., Butail S., Caroppo E., Jiang Z.-P., Rizzo A., Porfiri M. High-resolution agent-based modeling of COVID-19 spreading in a small town. Advanced Theory and Simulations. 2021 Vol. 4, Iss. 3. 2000277. https://doi.org/10.1002/ adts.202000277.
- Diomidous M., Pistolis J., Mechili A., Kolokathi A., Zimeras S. Healthcare information Systems for the epidemiologic surveillance within the community. Studies in Health Technology and Informatics. 2013. Vol. 190. P. 252–254.
- GЛmez-Rubio V., Ferrїndiz-Ferragud J., LЛpez-QuЗlez A. Epidemiological Information Systems. In: Interfacing Geostatistics and GIS. Pilz J. (Ed.). Berlin; Heidelberg: Springer-Verlag, 2009. P. 235–248. https://doi.org/10.1007/978-3-540-33236-7_18.
- Amadoz A., Gonzїlez-Candelas F. epiPATH: an information system for the storage and management of molecular epidemiology data from infectious pathogens. BMC Infectious Diseases. 2007. Vol. 7, 32. https://doi.org/10.1186/1471-2334-7-32.
- Meytus V.Yu. Problems of constructing intelligent systems. Intelligent modeling. Cybernetics and Systems Analysis. 2021. Vol. 57, N 4. P. 509–520. https://doi.org/10.1007/s10559-021-00376-4.
- Vdovichenko O., Perepelitsyn A. Technologies for building systems of remote lining of communication lines: a practical example of implementation. Radioelectronic and Computer Systems. 2021. Vol. 98 (2). https://doi.org/10.32620/reks.2021.2.03.
- Kharchenko V., Gorbenko A., Sklyar A., Phillips C. Green computing and communications in critical application domains: Challenges and solutions. Proc. International Conference on Digital Technologies 2013 (29–31 May 2013, Zilina, Slovakia). Zilina, 2013. P. 191–197. https://doi.org/10.1109/DT.2013.6566310.
- Krak Iu.V., Kudin G.I., Kulyas A.I. Multidimensional scaling by means of pseudoinverse operations. Cybernetics and Systems Analysis. 2019. Vol. 55, N 1. P. 22–29. https://doi.org/ 10.1007/s10559-019-00108-9.
- Potomkin M.M., Sedlyar A.A., Deineha O.V., Kravets O.P. Comparison of the methods used in multicriteria decision-making to determine the values of the coefficients of importance of indicators that characterize a complex system. Cybernetics and Systems Analysis. 2020. Vol. 56, N 6. P. 990–999. https://doi.org/10.1007/s10559-020-00319-5.
- Gritsenko V.I., Ursatiev A.A. Modern information technologies of data storage and computing. Kyiv: Nauk. Dumka, 2017. 213 p. (in Russian).