UDC 519.6
3 V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
khimich505@gmail.com
|
4 Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine
oopp3@ukr.net
|
HIGHLY PRODUCTIVE METHODS TO MODEL THE ADSORPTION WITH FEEDBACK
IN HETEROGENEOUS MULTICOMPONENT NANOPOROUS MEDIA
Abstract. New high-performance analytical methods for modeling diffuse gas concentration fields in intra- and interparticle spaces in heterogeneous n-component nanoporous media using the Heaviside operational method and Cauchy influence matrices for heterogeneous adsorption boundary-value problems for systems of partial differential equations with feedback have been developed.
Keywords: adsorption and diffusion of gases, mathematical modeling, Langmuir equilibrium condition, Heaviside operational method, Cauchy influence matrices, heterogeneous nanoporous media.
FULL TEXT
REFERENCES
- Puertolas B., Navarro M.V., Lopez J.M., Murillo R., Mastral A.M., Garcia T. Modelling the heat and mass transfers of propane onto a ZSM-5 zeolite. Separation and Purification Technology. 2012. Vol. 86. Р. 127–136. https://doi.org/10.1016/j.seppur.2011.10.036.
- Barrer R.M. Diffusion and flow in porous zeolite, carbon or ceramic media, characterization of porous solids. London: Society of Chemical Industry, 1979. https://doi.org/10.1016/S0167-2991(09)60728-X .
- De Boor R. Contemporary progress in porous theory. Apl. Mech. Rev. 2000. Vol. 53, Iss. 12. P. 323–369. https://doi.org/10.1115/1.3097333.
- Krisnha R., Van Baten J.M. Investigating the non-idealities in adsorption of CO2 -bearing mixtures in cation-exchanged zeolites. Separation and Purification Technology. 2018. Vol. 206. Р. 208–217. https://doi.org/10.1016/j.seppur.2018.06.009.
- Krishna R. Thermodynamically consistent methodology for estimation of diffusivities of mixtures of guest molecules in microporous materials. ACS Omega. 2019. Vol .4, Iss. 8. Р. 13520–13529. https://doi.org/10.1021/acsomega.9b01873.
- Krger J., Ruthven D. Diffusion in zeolites and other microporous solids. New York: Wiley & Sons, 1992.
- Krger J., Ruthven D., Theodorou D. Diffusion in nanoporous materials. Hoboken: Wiley, 2012. 902 p.
- Langmuir I. Vapor pressures evaporation, condensation and adsorption. J. Am. Chem. Soc. 1932. Vol 54. P. 2798–2832. https://doi.org/10.1021/ja01346a022.
- Lecler S., Petryk M., Canet D., Fraissard J. Competitive diffusion of gases in a zeolite using proton NMR and slice selection procedure. Catalysis Today. 2012. Vol. 187, N 1. P. 104–107. https://doi.org/10.1016/j.cattod.2011.09.007.
- Petryk М., Leclerc S., Canet D., Fraissard J. Modeling of gas transport in a microporous solid using a slice selection procedure: Application to the diffusion of benzene in ZSM5. Catalysis Today. 2008. Vol. 139(3). P. 234–240. https://doi.org/10.1016/j.cattod.2008.05.034.
- Petryk M., Leclerc S., Canet D., Sergienko I.V., Deineka V.S., Fraissard J. Competitive diffusion of gases in a zeolite bed: NMR and slice procedure, modelling and identification of parameters. J. Phys. Chem. C. 2015. Vol. 119(47). Р. 26519–26525. https://doi.org/10.1021/acs.jpcc.5b07974 .
- Sergienko I.V., Peryk M.R., Leclerk S., Fraissard J. Highly efficient methods of the identification of competitive diffusion parameters in heterogeneous media of nanoporous particles. Cybernetics and Systems Analysis. 2015. Vol. 51, N 4. Р. 529–546. https://doi.org/10.1007/s10559-015-9744-7 .
- Petryk M.R., Boyko I.V., Khimich O.M., Petryk M.M. High-performance supercomputer technologies of simulation of nanoporous feedback systems for adsorption gas purification. Cybernetics and Systems Analysis. 2020. Vol. 56, N 5. P. 835–847. https://doi.org/10.1007/s10559-020-00304-y .
- Petryk M., Ivanchov M., Leclerc S., Canet D., Fraissard J. Competitive adsorption and diffusion of gases in a microporous solid. In: Zeolites — New Challenges. Margeta K., Farkas A. (Eds). London: IntecOpenn, 2020 P. 13–31. https://doi.org/10.5772/intechopen.88138.
- Ximich O.M., Petryk M.R., Mykhalyk D.M., Boyko I.V., Popov O.V., Sydoruk V.A. Methods of mathematical modeling and identification of complex processes and systems based on high-performance computing [in Ukrainian]. Kyiv: NAS of Ukraine, 2019. 190 p.
- Petryk M., Khimich A., Petryk M.M., Fraissard J. Experimental and computer simulation studies of dehydration on microporous adsorbent of natural gas used as motor fuel. Fuel. 2019. Vol. 239. P. 1324–1330. https://doi.org/10.1016/j.fuel.2018.10.134 .
- Petryk M.R., Khimich A.N., Petryk M.M. Simulation of adsorption and desorption of hydrocarbons in nanoporous catalysts of neutralization systems of exhaust gases using nonlinear Langmuir isotherm. Journal of Automation and Information Sciences. 2018. Vol. 50, Iss. 10. P. 18–33. https://doi.org/10.1615/JAutomatInfScien.v50.i10.20.
- Doetsch G. Handbuch der Laplace-transformation: Band I: Theorie der Laplace-transformation. Basel: Springer, 2013. 581 p.
- Lenyuk M.P., Petryk M.R. Fourier, Bessel integral transformations with a spectral parameter in problems of mathematical modeling of mass transfer in heterogeneous media [in Ukrainian]. Kyiv: Nauk. dumka, 2000. 372 p.
- Petryk M., Gancarczyk T., Khimich O. Methods of mathematical modeling and identification of complex processes and systems on the basis of high-performance calculations (neuro- and nanoporous feedback cyber systems, models with sparse structure data, parallel computations). Bielsko-Biala, Poland: Scientific Publishing University of Bielsko-Biala (Wydawnictwo Naukowe Akademia Techniczno-Humanistyczna), 2021. 194 p. https://www.sbc.org.pl/dlibra .