UDC 519.8
1 Lesya Ukrainka Volyn National University, Lutsk, Ukraine
tetvas@ukr.net
|
|
FOURIER TRANSFORM OF THE SUMMING ABEL–POISSON FUNCTION
Abstract. The work is devoted to the current issues of the theory of optimal solutions, namely the analysis of the asymptotic properties of the Fourier transformation of the summing Abel–Poisson function. The Fourier transform considered in the paper is based on the solution of the classical Laplace’s equation in polar coordinates (in the middle of the single circle) with the corresponding boundary conditions. Moreover, this Fourier transform of the summing Abel–Poisson function is denoted by classes of functions with fractional derivatives. Therefore, the asymptotic estimates obtained in the paper for this Fourier transform are an important element in solving many applied optimization problems.
Keywords: theory of optimal solutions, optimization problems, Fourier transform, asymptotic properties.
FULL TEXT
REFERENCES
- Chikrii A., Matychyn I. Riemann-Liouville, Caputo, and sequential fractional derivatives in differential games. In: Breton M., Szajowski K. (Еds.). Advances in Dynamic Games. 2011. Vol. 11. P. 61–81. doi.org/10.1007/978-0-8176-8089-3_4.
- Chikrii A.A., Matichin I.I. Game problems for fractional-order linear systems. Proc. of the Steklov Institute of Mathematics. 2010. Vol. 268. P. 54–70. doi.org/10.1134/S0081543810050056 .
- Chikrii A.A., Eidelman S.D. Control game problems for quasilinear systems with Riemann-Liouville fractional derivatives. Cybernetics and Systems Analysis. 2001. Vol. 37, N 6. P. 836–864. doi.org/10.1023/A:1014529914874.
- Kharkevych Yu.I., Zhyhallo T.V. Approximation of -differentiable functions defined on the real axis by Abel–Poisson operators. Ukrainian Math. J. 2005. Vol. 57, N 8. P. 1297–1315. doi.org/10.1007/s11253-005-0262-z .
- Zhyhallo T.V., Kharkevych Yu.I. On approximation of functions from the class by the Abel–Poisson integrals in the integral metric. Carpathian Math. Publ. 2022. Vol. 14, N 1. P. 223–229. doi.org/10.15330/cmp.14.1.223-229.
- Kal’chuk I.V., Kharkevych Y.I. Approximation of the classes by generalized Abel–Poisson integrals. Ukrains’kyi Matematychnyi Zhurnal. 2022. Vol. 74, N 4. P. 507–515. doi.org/10.37863/umzh.v74i4.7164.
- Serdyuk A., Hrabova U. Order estimates of the uniform approximations by Zygmund sums on the classes of convolutions of periodic functions. Carpathian Math. Publ. 2021. Vol. 13, N 1. P. 68–80. doi.org/10.15330/cmp.13.1.68-80.
- Bushev D.M., Kharkevych Y.I. Conditions of convergence almost everywhere for the convolution of a function with delta-shaped kernel to this function. Ukrainian Math. J. 2016. Vol. 67, N 11. P. 1643–1661. doi.org/10.1007/s11253-016-1180-y .
- Pilipenko Yu.B., Chikrii A.A. Oscillatory conflict-control processes. Journal of Applied Mathematics and Mechanics. 1993. Vol. 57, N 3. P. 407–417. doi.org/10.1016/0021- 8928(93)90119-7 .
- Albus J., Meystel A., Chikrii A.A., Belousov A.A., Kozlov A.I. Analytical method for solution of the game problem of soft landing for moving objects. Cybernetics and Systems Analysis. 2001. Vol. 37, N 1. P. 75–91. doi.org/10.1023/A:1016620201241.
- Chikrii A.A., Chikrii V.K. Image structure of multivalued mappings in game problems of motion control. Journal of Automation and Information Sciences. 2016. Vol. 48, N 3. P. 20–35. doi.org/10.1615/JAutomatInfScien.v48.i3.30 .
- Zhyhallo K.M., Kharkevych Yu.I. Approximation of -differentiable functions of low smoothness by biharmonic Poisson integrals. Ukrainian Math. J. 2012. Vol. 63, N 12. P. 1820–1844. doi.org/10.1007/s11253-012-0616-2.
- Stepanets A.I. Uniform approximations by trigonometric polynomials [in Russian]. Kyiv: Nauk. dumka, 1981. 340 з.
- Kharkevych Yu.I. Approximative properties of the generalized Poisson integrals on the classes of functions determined by a modulus of continuity. Journal of Automation and Information Sciences. 2019. Vol. 51, N 4. P. 43–54. doi.org/10.1615/JAutomatInfScien.v51.i4.40.
- Kal’chuk I.V., Kharkevych Yu.I., Pozharska K.V. Asymptotics of approximation of functions by conjugate Poisson integrals. Carpathian Math. Publ. 2020. Vol. 12, N 1. P. 138–147. doi.org/10.15330/cmp.12.1.138-147.
- Kharkevych Yu.I. On Approximation of the quasi-smooth functions by their Poisson type integrals. Journal of Automation and Information Sciences. 2017. Vol. 49, N 10. P. 74–81. doi.org/10.1615/JAutomatInfScien.v49.i10.80.
- Kharkevych Yu. I., Pozharska K.V. Asymptotics of approximation of conjugate functions by Poisson integrals. Acta Comment. Univ. Tartu. Math. 2018. Vol. 22, N 2. P. 235–243. doi.org/10.12697/ACUTM.2018.22.19.
- Kharkevych Yu.I. Asymptotic expansions of upper bounds of deviations of functions of class from their generalized Poisson integrals. Journal of Automation and Information Sciences. 2018. Vol. 50, N 8. P. 38–49. doi.org/10.1615/jautomatinfscien.v50.i8.40.
- Kal’chuk I.V., Hrabova U.Z., Filozof L.I. Approximation of the classes by three-harmonic Poisson integrals. J. Math. Sci. (N.Y.). 2021. Vol. 254, N 3. P. 397–405. https://doi.org/10.1007/s10958-021-05311-8 .
- Zhyhallo K.M., Kharkevych Yu.I. Approximation of functions from the classes
doi.org/10.1007/s11253-011-0565-81.
- Abdullayev F.G., Kharkevych Yu.I. Approximation of the classes by biharmonic Poisson integrals. Ukrainian Math. J. 2020. Vol. 72, N 1. P. 21–38. doi.org/10.1007/s11253-020-01761-6 .
- Hrabova U.Z., Kal’chuk I.V. Approximation of the classes by three-harmonic Poisson integrals. Carpathian Math. Publ. 2019. Vol. 11, N 2. P. 10–23. doi.org/10.15330/cmp.11.2.321-334 .
- Kharkevych Yu.I., Kal’chuk I.V. Approximation of -differentiable functions by Weierstrass integrals. Ukrainian Math. J. 2007. Vol. 59, N 7. P. 1059–1087. https://doi.org/10.1007/s11253-007-0069-1.
- Kal’chuk I.V., Kravets V.I., Hrabova U.Z. Approximation of the classes by three-harmonic Poisson integrals. J. Math. Sci. (N. Y.). 2020. Vol. 246, N 2. P. 39–50. doi.org/10.1007/s10958-020-04721-4.
- Hrabova U.Z. Uniform approximations by the Poisson threeharmonic integrals on the Sobolev classes. Journal of Automation and Information Sciences. 2019. Vol. 51, N 12. P. 46–55. doi.org/10.1615/JAutomatInfScien.v51.i12.50.
- Bausov L.I. Linear summation methods for Fourier series with given rectangular matrices. I. Izv. vuzov. Maths. 1965. Vol. 46, N 3. P. 15–31.
- Kharkevych Yu.I., Zhyhallo T.V. Approximation of functions from the class by Poisson biharmonic operators in the uniform metric. Ukrainian Math. J. 2008. Vol. 60, N 5. P. 769–798. doi.org/10.1007/s11253-008-0093-9.
- Kal’chuk I, Kharkevych Y. Approximation properties of the generalized Abel–Poisson Integrals on the Weyl–Nagy classes. Axioms. 2022. Vol. 11, N 4. P. 161. doi.org/10.3390/axioms11040161.
- Zhyhallo K.M., Kharkevych Yu.I. On the approximation of functions of the Hlder class by triharmonic Poisson integrals. Ukrainian Math. J. 2001. Vol. 53, N 6. P. 1012–1018. doi.org/10.1023/A:1013364321249.
- Chikrii A.A., Chikrii G.Ts. Matrix resolving functions in game problems of dynamics. Proc. of the Steklov Institute of Mathematics. 2015. Vol. 291. P. 56–65. doi.org/10.1134/S0081543815090047.
- Chikrii A.A., Eidel’man S.D. Generalized Mittag-Leffler matrix functions in game problems for evolutionary equations of fractional order. Cybernetics and Systems Analysis. 2000. Vol. 36, N 3. P 315–338. doi.org/10.1007/BF02732983 .
- Vlasenko L.A., Rutkas A.G., Chikrii A.A. On a differential game in an abstract parabolic system. Proc. of the Steklov Institute of Mathematics. 2016. Vol. 293. P. 254–269. doi.org/10.1134/S0081543816050229.
- Sobchuk V., Kal’chuk I., Kharkevych Y., Kharkevych G. Estimations of the convergence rate of the Fourier transformation for data processing efficiency improvement. IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT). 2021. P. 76–79. doi.org/10.1109/ATIT54053.2021.9678825.
- Kharkevych G., Kharkevych Y., Kal’chuk I., Sobchuk V. Usage of Fourier transformation theory in machine translation. IEEE 2nd International Conference on Advanced Trends in Information Theory (IEEE ATIT 2020), Kyiv, Ukraine. 2020. P. 196–199. doi.org/10.1109/ATIT50783.2020.9349329.
- Kharkevych Yu.I. On some asymptotic properties of solutions to biharmonic equations. Cybernetics and Systems Analysis. 2022. Vol. 58, N 2. P. 251–258. doi.org/ 10.1007/s10559-022-00457-y
- Makarchuk A., Kal’chuk I., Kharkevych Y., Yakovleva A. The usage of interpolation polynomials in the studying of data transmission in networks. IEEE 2nd International Conference on System Analysis & Intelligent Computing (SAIC), Kyiv, Ukraine. 2020. P. 1–4. doi.org/10.1109/SAIC51296.2020.9239180.
- Sobchuk V., Kal’chuk I., Kharkevych G., Laptiev O., Kharkevych Y., Makarchuk A. Solving the problem of convergence of the results of analog signals conversion in the process of aircraft control. IEEE 6th International Conference on Actual Problems of Unmanned Aerial Vehicles Development, APUAVD. 2021. P. 29–32. doi.org/10.1109/APUAVD53804. 2021.9615437 .