Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 004.032.26
S. Shapovalova1, Yu. Moskalenko2, O. Baranichenko3


1 National Technical University “Igor Sikorsky Kyiv Polytechnic Institute,” Kyiv, Ukraine

lanashape@gmail.com

2 National Technical University “Igor Sikorsky Kyiv Polytechnic Institute,” Kyiv, Ukraine

yuramuv@gmail.com

3 National Technical University “Igor Sikorsky Kyiv Polytechnic Institute,” Kyiv, Ukraine

baranichenko.work@gmail.com

INCREASING THE RECEPTIVE FIELD OF NEURONS OF CONVULSIONAL
NEURAL NETWORKS

Abstract. The convolutional neural network architectures for the classification of 1D- and 2D-signals are analyzed. It has been determined that in the case of a large-dimensional input signal, sufficient classification accuracy can be ensured by only using a large number of layers, which cannot be done under limited computing resources. However, if the number of layers is limited, starting from some critical dimension value, the accuracy decreases. A method of modifying a convolutional neural network with a relatively small number of layers is proposed to solve this problem. Its effectiveness is proved experimentally.

Keywords: convolutional neural networks, ResNet, EfficientNet, WaveNet, receptive field.


full text

REFERENCES

  1. He K., Zhang X., Ren S., Sun J. Deep residual learning for image recognition. Proc. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (27-30 June 2016, Las Vegas, NV, USA). Las Vegas, 2016. P. 770–778. https://doi.org/10.48550/arXiv.1512.03385.

  2. Xie S., Girshick R., Dollїr P., Tu Z., He K. Aggregated residual transformations for deep neural networks. Proc. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (21-26 July 2017, Honolulu, HI, USA). Honolulu, 2017. P. 5987–5995. https://doi.org/10.48550/arXiv.1611.05431 .

  3. Hu J., Shen L., Sun G. Squeeze-and-excitation networks. Proc. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (18-23 June 2018, Salt Lake City, UT, USA). Salt Lake City, 2018. P. 7132–7141. https://doi.org/10.48550/arxiv.1709.01507 .

  4. Tan M., Le Q.V. EfficientNet: Rethinking model scaling for convolutional neural networks. Proc. 36th International Conference on Machine Learning (ICML 2019) (9-15 June 2019, Long Beach, CA, USA). Long Beach, 2019. P. 6105–6114. https://doi.org/10.48550/arxiv.1905.11946.

  5. Tan M., Le Q.V. EfficientNetV2: Smaller models and faster training. Proc. 38th International Conference on Machine Learning (ICML 2021) (18–24 July 2021, virtual event). P. 10096–10106. https://doi.org/10.48550/arxiv.2104.00298.

  6. Li S., Tan M., Pang R., Li A., Cheng L., Le Q., Jouppi N. Searching for fast model families on datacenter accelerators. Proc. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021) (20-25 June 2021, Nashville, TN, USA). Nashville, 2021. P. 8081–8091. https://doi.org/10.1109/CVPR46437.2021.00799 .

  7. Ridnik T., Lawen H., Noy A., Ben E., Sharir B.G., Friedman I. TResNet: High performance GPU-dedicated architecture. Proc. 2021 IEEE Winter Conference on Applications of Computer Vision (WACV) (03-08 January 2021, Waikoloa, HI, USA). Waikoloa, 2021. P. 1399–1408. https://doi.org/10.1109/WACV48630.2021.00144)

  8. Oord A., Dieleman S., Zen H., Simonyan K., Vinyals O., Graves A., Kalchbrenner N., Senior A., Kavukcuoglu K. Wavenet: A generative model for raw audio. 2016. P. 1–15. https://doi.org/10.48550/arxiv.1609.03499

  9. Shapovalova S., Moskalenko Y. Methods for increasing the classification accuracy based on modifications of the basic architecture of convolutional neural networks. ScienceRise. 2020. N 6 (71). P. 10–16. https://doi.org/10.21303/2313-8416.2020.001550 .

  10. Wavenet with SHIFTED-RFC Proba and CBR. Kaggle/Code. URL: https://www.kaggle.com/nxrprime/wavenet-with-shifted-rfc-proba-and-cbr .

  11. University of Liverpool — Ion Switching. Kaggle/Competitions. URL: https://www.kaggle.com/c/liverpool-ion-switching .

  12. Lin T.-Y., Goyal P., Girshick R., He K., Dollїr P. Focal loss for dense object detection. Proc. 2017 IEEE International Conference on Computer Vision (ICCV) (22-29 October 2017, Venice, Italy). Venice, 2017. P. 2999-3007. https://doi.org/10.1109/ICCV.2017.324.

  13. Salehi S.S.M., Erdogmus D., Gholipour A. Tversky loss function for image segmentation using 3D fully convolutional deep networks. Proc. MLMI 2017. In: Lecture Notes in Computer Science. Wang Q., Shi Y., Suk HI., Suzuki K. (Eds). 2017. Vol. 10541. P. 379–387. https://doi.org/10.1007/978-3-319-67389-9_44 .

  14. Sorensen T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biologiske Skrifter/Kongelige Danske Videnskabernes Selskab. 1948. Vol. V, N 4. P. 1–34.

  15. Quick, Draw! Doodle Recognition Challenge. Kaggle/Competitions. URL: https://www.kaggle.com/c/quickdraw-doodle-recognition .




© 2023 Kibernetika.org. All rights reserved.