Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 519.21
Y.M. Chabanyuk1, A.V. Nikitin2, U.T. Khimka3


1 Ivan Franko Lviv National University, Lviv, Ukraine; Lublin University of Technology, Lublin, Poland

yaroslav.chabanyuk@lnu.edu.ua;
y.chabanyuk@pollub.pl

2 National University of Ostroh Academy, Ostroh, Ukraine; Jan Kochanowski University of Kielce, Kielce, Poland

anatolii.nikitin@oa.edu.ua;
anatolii.nikitin@ujk.edu.pl

3 Ivan Franko Lviv National University, Lviv, Ukraine

ulyana.khimka@lnu.edu.ua

AVERAGING IN THE CONTROL PROBLEM FOR THE DIFFUISON
TRANSFER PROCESS WITH SEMI-MARKOV SWITCHES

Abstract. The limit generators were constructed for the system of stochastic differential equations with semi-Markov switches and diffusion perturbance under the conditions of the existence of a single equilibrium point of the performance criterion. Assuming the existence of a single control on each interval, we solve a two-level problem. The article examines how the behavior of the limit process depends on the pre-limit normalization of the stochastic system in the ergodic semi-Markov environment.

Keywords: random evolution, stochastic optimization, semi-Markov switches.


full text

REFERENCES

  1. Anisimov V.V. Switching Processes in Gueuing Models. London: Wiley-ISTE, 2008. 352 p.

  2. Korolyuk V.S., Korolyuk V.V. Stochastic Models of Systems. Kluwer, Dordrecht, 1999.

  3. Korolyuk V.S., Limnios N. Stochastic Systems in Merging Phase Space. World Scientific, 2005.

  4. Chabanyuk Y.M., Nikitin A.V., Khimka U.T. Asymptotic properties of the impulse perturbation process with control function under Levy approximation conditions. Mathematychni Studii. 2019. Vol. 52, N 1. P. 96–104. doi.org/10.30970/ms.52.1.96-104.

  5. Nikitin A.V., Khimka U.T. Asymptotics of normalized control with Markov switchings. Ukrainian Mathematical Journal. 2017. Vol. 68, N 8. P. 1252–1262. doi.org/10.1007/ s11253-017-1291-0 .

  6. Nikitin A.V. Asymptotic properties of a stochastic diffusion transfer process with an equilibrium point of a quality criterion. Cybernetics and Systems Analysis. 2015. Vol. 51, N 4. P. 650–656. doi.org/10.1007/s10559-015-9756-3 .

  7. Nikitin A.V. Asymptotic dissipativity of stochastic processes with impulsive perturbation in the Levy approximation scheme. Journal of Automation and Information Sciences. 2018. Vol. 50, Iss. 4. P. 54–63. doi.org/10.1615/jautomatinfscien.v50.i4.50.

  8. Samoilenko I.V., Chabanyuk Y.M., Nikitin A.V. Asymptotic dissipativity of random processes with impulse perturbation in the Poisson approximation scheme. Cybernetics and Systems Analysis. 2018. Vol. 54, N 2. P. 205–211. doi.org/10.1007/s10559-018-0021-4.

  9. Khimka U.T., Chabanyuk Ya.M. A difference stochastic optimization procedure with impulse perturbation. Cybernetics and Systems Analysis. 2013. Vol. 49, N 5. P. 768–773. doi.org/10.1007/s10559-013-9564-6.

  10. Chabanyuk Y., Nikitin A., Khimka U. Asymptotic Analyses for Complex Evolutionary Systems with Markov and Semi-Markov Switching Using Approximation Schemes. Wiley Online Library, London, 2020. 240 р. doi.org/10.1002/9781119779759.

  11. Nevelson M.B., Khasminsky R.Z. Stochastic approximation and recurrent estimation [in Russian]. Moscow: Nauka, 1972. 304 c.

  12. Jacod J., Shiryaev A.N. Limit Theorems for Stochastic Processes. Berlin; Heidelberg: Springer Link, 2003. P. 664. doi.org/10.1007/978-3-662-05265-5.

  13. Papanicolaou G., Stroock D., Varadhan S.R.S. Martingale approach to some limit theorems. Duke turbulence conference (Durham, NC, April 23–25, 1976). Duke University Mathematics Series III, New York: Duke University, 1977. 120 p.




© 2023 Kibernetika.org. All rights reserved.