Cybernetics And Systems Analysis logo
Інформація редакції Аннотації статей Автори Архів
Кібернетика та Системний Аналіз
Міжнародний Науково-Теоретичний Журнал
-->

УДК 519.8

Ю.І. ХАРКЕВИЧ
Волинський національний університет імені Лесі Українки, Луцьк, Україна,
kharkevich.juriy@gmail.com

О.Г. ХАНІН
Волинський національний університет імені Лесі Українки, Луцьк, Україна,
aleks.hanin@gmail.com


АСИМПТОТИЧНІ ВЛАСТИВОСТІ РОЗВ’ЯЗКІВ
ДИФЕРЕНЦІАЛЬНИХ РІВНЯНЬ ВИЩИХ ПОРЯДКІВ
НА УЗАГАЛЬНЕНИХ КЛАСАХ ГЕЛЬДЕРА

Анотація. Досліджено деякі асимптотичні властивості розв’язків диференціальних рівнянь еліптичного типу з використанням методів теорії наближень. Розглянуто апроксимаційні характеристики операторів типу Пуассона як розв’язків диференціальних рівнянь вищих порядків на узагальнених класах Гельдера в рівномірній метриці. Розв’язано задачу Колмогорова–Нікольського (у термінології О.І. Степанця) про знаходження верхньої межі відхилень функцій, визначених за допомогою модуля неперервності, від операторів Абеля–Пуассона та Гаусса–Вейєрштрасса в метриці простору Згадані оператори є одним з ефективних інструментів дослідження математичних моделей, які виникають під час розв’язання багатьох прикладних оптимізаційних задач.

Ключові слова: оптимізаційні властивості функцій, апроксимаційні характеристики, задача Колмогорова–Нікольського, оператор Абеля–Пуассона, оператор Гаусса–Вейєрштрасса, класи Гельдера.


повний текст

СПИСОК ЛІТЕРАТУРИ

  1. Глушков В.М. Введение в АСУ. Київ: Техніка, 1974. 320 с.

  2. Vlasenko L.A., Rutkas A.G., Semenets V.V., Chikriy A.A. On the optimal impulse control in descriptor systems. Journal of Automation and Information Sciences. 2019. Vol. 51, N 5. P. 1–15. doi.org/10.1615/JAutomatInfScien.v51.i5.10.

  3. Chikrii A.A., Rappoport I.S. Method of resolving functions in the theory of conflict-controlled processes. Cybernetics and Systems Analysis. 2012. Vol. 48, N 4. P. 512–531. doi.org/10.1007/s10559-012-9430-y .

  4. Chikrij A.A., Dzyubenko K.G. Bilinear markovian processes of search for moving objects. Problemy Upravleniya i Informatiki (Avtomatika). 1997. N 1. P. 92–106.

  5. Kharkevych Yu.I. On some asymptotic properties of solutions to biharmonic equations. Cybernetics and Systems Analysis. 2022. Vol. 58, N 2. P. 251–258. https://doi.org/10.1007/ s10559-022-00457-y .

  6. Zhyhallo K.M., Kharkevych Yu.I. Approximation of conjugate differentiable functions by biharmonic Poisson integrals. Ukr. Math. J. 2009. Vol. 61, N 3. P. 399–413. https://doi.org/ 10.1007/s11253-009-0217-x .

  7. Zajac J., Korenkov M.E., Kharkevych Yu.I. On the asymptotics of some Weierstrass functions. Ukr. Math. J. 2015. Vol. 67, N 1. P. 154–158. https://doi.org/10.1007/ s11253-015-1070-8.

  8. Zhyhallo T.V., Kharkevych Yu.I. Approximating properties of biharmonic Poisson operators in the classes . Ukr. Math. J. 2017. Vol. 69, N 5. P. 757–765. doi.org/10.1007/ s11253-017-1393-8.

  9. Дзядык В.К. Введение в теорию равномерного приближения функций полиномами. Москва: Наука, 1977. 512 с.

  10. Chikrii A.A., Chikrii G.Ts. Matrix resolving functions in game problems of dynamics. Proc. of the Steklov Institute of Mathematics. 2015. Vol. 291. P. 56–65. doi.org/10.1134/S0081543815090047 .

  11. Vlasenko L.A., Rutkas A.G., Chikrii A.A. On a differential game in an abstract parabolic system. Proc. Steklov Inst. Math. 2016. Vol. 293 (Suppl 1). P. 254–269. doi.org/10.1134/S0081543816050229.

  12. Chikrii A., Matychin I. Riemann-Liouville, Caputo, and sequential fractional derivatives in differential games. Breton M., Szajowski K. (Еds.). Advances in Dynamic Games. Annals of the International Society of Dynamic Games, Birkhuser Boston. 2011. Vol. 11. P. 61–81. doi.org/10.1007/978-0-8176-8089-3_4.

  13. Zhyhallo K.M., Kharkevych Yu.I. On the approximation of functions of the Hlder class by biharmonic Poisson integrals. Ukr. Math. J. 2000. Vol. 52, N 7. P. 1113–1117. doi.org/10.1023/A:1005285818550.

  14. Kharkevych Yu.I., Kal’chuk I.V. Asymptotics of the values of approximations in the mean for classes of differentiable functions by using biharmonic Poisson integrals. Ukr. Math. J. 2007. Vol. 59, N 8. P. 1224–1237. doi.org/10.1007/s11253-007-0082-4.

  15. Kharkevych Yu.I., Zhyhallo T.V. Approximation of -differentiable functions defined on the real axis by Abel–Poisson operators. Ukr. Math. J. 2005. Vol. 57, N 8. P. 1297–1315. doi.org/10.1007/s11253-005-0262-z .

  16. Kal’chuk I.V., Hrabova U.Z., Filozof L.I. Approximation of the classes by three-harmonic Poisson integrals. J. Math. Sci. (N.Y.). 2021. Vol. 254, N 3. P. 397–405. doi.org/10.1007/s10958-021-05311-8.

  17. Chikrii A.A., Prokopovich P.V. Simple pursuit of one evader by a group. Cybernetics and Systems Analysis. 1992. Vol. 28, N 3. P. 438–444. doi.org/10.1007/BF01125424.

  18. Bushev D.N., Kharkevich Y.I. Finding solution subspaces of the Laplace and heat equations isometric to spaces of real functions, and some of their applications. Math. Notes. 2018. Vol. 103, N 5–6. P. 869–880. doi.org/10.1134/S0001434618050231 .

  19. Pilipenko Yu.B., Chikrii A.A. The oscillation processes of conflict control. Prikladnaya Matematika i Mekhanika. 1993. Vol. 57, N 3. P. 3–14.

  20. Albus J., Meystel A., Chikrii A.A., Belousov A.A., Kozlov A.I. Analytical method for solution of the game problem of soft landing for moving objects. Cybernetics and Systems Analysis. 2001. Vol. 37, N 1. P. 75–91. doi.org/10.1023/A:1016620201241.

  21. Zhyhallo T.V., Kharkevych Yu.I. On approximation of functions from the class by the Abel–Poisson integrals in the integral metric. Carpathian Math. Publ. 2022. Vol. 14, N 1. P. 223–229. doi.org/10.15330/cmp.14.1.223–229.

  22. Kal’chuk I.V., Kharkevych Y.I. Approximating properties of biharmonic Poisson integrals in the classes . Ukr. Math. J. 2017. Vol. 68, N 11. P. 1727–1740. doi.org/10.1007/ s11253-017-1323-9 .

  23. Kharkevych Yu.I., Zhyhallo T.V. Approximation of functions defined on the real axis by operators generated by -methods of summation of their Fourier integrals. Ukr. Math. J. 2004. Vol. 56, N 9. P. 1509–1525. doi.org/10.1007/s11253-005-0130-x .

  24. Zhyhallo K.M., Kharkevych Yu.I. Approximation of conjugate differentiable functions by their Abel–Poisson integrals. Ukr. Math. J. 2009. Vol. 61, N 1. P. 86–98. doi.org/10.1007/s11253-009-0196-y .

  25. Zhyhallo T.V., Kharkevych Yu.I. Fourier transform of the summatory Abel–Poisson function. Cybernetics and Systems Analysis. 2022. Vol. 58, N 6. P. 957–965. doi.org/10.1007/s10559-023-00530-0.

  26. Kharkevych Yu.I., Zhyhallo T.V. Approximation of functions from the class by Poisson biharmonic operators in the uniform metric. Ukr. Math. J. 2008. Vol. 60, N 5. P. 769–798. doi.org/10.1007/s11253-008-0093-9.

  27. Kharkevich Yu.I., Stepanyuk T.A. Approximation properties of Poisson integrals for the classes . Math. Notes. 2014. Vol. 96, N 5–6. P. 1008–1019. doi.org/10.1134/S0001434614110406 .

  28. Kal’chuk I.V., Kharkevych Yu.I. Approximation of the classes by generalized Abel–Poisson integrals. Ukr. Math. J. 2022. Vol. 74, N 9. P. 575–585. doi.org/ 10.1007/s11253-022-02084-4.

  29. Kharkevych Yu.I. Approximative properties of the generalized Poisson integrals on the classes of functions determined by a modulus of continuity. Journal of Automation and Information Sciences. 2019. Vol. 51, N 4. P. 43–54. doi.org/10.1615/ JAutomatInfScien.v51.i4.40.

  30. Kharkevych Yu.I. On Approximation of the quasi-smooth functions by their Poisson type integrals. Journal of Automation and Information Sciences. 2017. Vol. 49, N 10. P. 74–81. doi.org/10.1615/JAutomatInfScien.v49.i10.80 .

  31. Kal’chuk I., Kharkevych Yu. Approximation рroperties of the generalized Abel–Poisson integrals on the Weyl-Nagy classes. Axioms. 2022. Vol. 11, N 4: 161. doi.org/10.3390/axioms11040161.

  32. Kharkevych Yu.I., Kal’chuk I.V. Approximation of -differentiable functions by Weierstrass integrals. Ukr. Math. J. 2007. Vol. 59, N 7. P. 1059–1087. https://doi.org/ 10.1007/s11253-007-0069-1.

  33. Степанец А. И. Методы теории приближения. Киев: Ин-т математики НАН Украины, 2002. Ч. I. 427 с.

  34. Bushev D.M., Kharkevych Yu.I. Conditions of convergence almost everywhere for the convolution of a function with delta-shaped kernel to this function. Ukr. Math. J. 2016. Vol. 67, N 11. P. 1643–1661. doi.org/10.1007/s11253-016-1180-y .

  35. Chikrij A.A., Ejdel’man S.D. Game problems of control for quasilinear systems with fractional Riemann–Liouville derivatives. Kibernetika i Sistemnyj Analiz. 2001. N 6. P. 66–99.

  36. Kharkevych Yu. Approximation theory and related applications. Axioms. 2022, Vol. 11, N 12. P. 736. doi.org/10.1134/S0081543810050056 .




© 2023 Kibernetika.org. All rights reserved.