Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 004.032.26
S. Dovgyi1, M. Zoziuk2, D. Koroliouk3


1 Institute of Telecommunication and Global Information Space of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

pryjmalnya@gmail.com

2 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine

maksym.zoziuk@gmail.com

3 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine; Institute of Telecommunication and Global Information Space of the National Academy of Sciences of Ukraine, Kyiv, Ukraine; Laboratory of Digital Innovations of the UNESCO Interdisciplinary Chair of Biotechnology and Bioetics, University of Rome Tor Vergata, Italy

dimitri.koroliouk@ukr.net

AN ADAPTIVE DEEP LEARNING SYSTEM FOR EXPLORING GENERAL DATA

Abstract. The authors present an approach to the analysis of a large amount of data that have no clear interconnection, but the nature of such a connection, if it exists, needs to be established. The possibility of automatic data processing and automatic change of parameters of the deep learning system for the formation of a deep learning platform during the analysis of data parameters is shown. It is also shown how such a system solves the needs of specialists from other fields who have never used deep learning systems. With the help of the well-known MNIST data set, it is established that with the use of individual parameters, it is possible to change their influence on the accuracy of prediction.

Keywords: neural network, automatic data processing, sampling informativeness, forecasting system, processing methods.


full text

REFERENCES

  1. Shaikh A.A., Doss A.N., Subramanian M., Jain V., Naved M., Mohiddin Md.K. Major applications of data mining in medical. Materials Today: Proceedings. 2022. Vol. 56, Pt. 4. P. 2300–2304. https://doi.org/10.1016/j.matpr.2021.11.642.

  2. Behrad F., Abadeh M.S. An overview of deep learning methods for multimodal medical data mining. Expert Systems with Applications. 2022. Vol. 200. Article 117006. https://doi.org/ 10.1016/j.eswa.2022.117006.

  3. Taranath N.L., Roopashree H.R., Yogeesh A.C., Darshan L.M., Subbaraya C.K. Medical decision support system using data mining. In: Predictive Modeling in Biomedical Data Mining and Analysis. Roy S., Goyal L.M., Balas V.E., Agarwal B., Mittal M. (Eds.). Academic Press, 2022. P. 49–64. "https://doi.org/10.1016/B978-0-323-99864-2.00007-X .

  4. Brescia M., Longo G. Astroinformatics, data mining and the future of astronomical research. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2013. Vol. 720. P. 92–94, https://doi.org/10.1016/j.nima.2012.12.027.

  5. Settino M., Ruffolo A., La Regina F. “Mining” the sky from data mining. Acta Astronautica. 2006. Vol. 59, Iss. 6. P. 499–502. "https://doi.org/10.1016/j.actaastro.2006.03.006.

  6. Chen Y., Kong R., Kong L. Applications of artificial intelligence in astronomical big data. In: Big Data in Astronomy. Kong L., Huang T., Zhu Y., Yu S. (Eds.). Elsevier, 2020. P. 347–375. https://doi.org/10.1016/B978-0-12-819084-5.00006-7.

  7. Carlbring P., Hadjistavropoulos H., Kleiboer A., Andersson G. A new era in Internet interventions: The advent of Chat-GPT and AI-assisted therapist guidance. Internet Interventions. 2023. 100621. https://doi.org/10.1016/j.invent.2023.100621 .

  8. Thelwall M., Sud P. Webometric research with the Bing Search API 2.0. Journal of Informetrics. 2012. Vol. 6, Iss. 1. P. 44–52. https://doi.org/10.1016/j.joi.2011.10.002.

  9. Antonello F., Baraldi P., Shokry A., Zio E., Gentile U., Serio L. A novel association rule mining method for the identification of rare functional dependencies in Complex Technical Infrastructures from alarm data. Expert Systems with Applications. 2021. Vol. 170. 114560. https://doi.org/10.1016/j.eswa.2021.114560 .

  10. He Y.-L., Ou G.-L., Fournier-Viger P., Huang J.Z., Suganthan P.N. A novel dependency-oriented mixed-attribute data classification method. Expert Systems with Applications. 2022. Vol. 199. 116782. https://doi.org/10.1016/j.eswa.2022.116782.

  11. Di Martino F., Loia V., Sessa S. Fuzzy transforms method and attribute dependency in data analysis. Information Sciences. 2010. Vol. 180, Iss. 4. P. 493–505. https://doi.org/10.1016/ j.ins.2009.10.012 .

  12. Koroliouk D.V., Korolyuk V.S. Filtration of stationary Gaussian statistical experiments. J. Math. Sci. 2018. Vol. 229, Iss. 1. P. 30–35. https://doi.org/10.1007/s10958-018-3660-0.

  13. Koroliouk D.V. Binary statistical experiments with persistent nonlinear regression. Theor. Probability and Math. Statist. 2015. Vol. 91. P. 71–80. https://doi.org/10.1090/tpms/967.

  14. Koroliouk D., Koroliuk V.S., Nicolai E., Bisegna P., Stella L., Rosato N. A statistical model of macromolecules dynamics for Fluorescence Correlation Spectroscopy data analysis. Statistics, Optimization & Information Computing. 2016. Vol. 4, N 3. P. 233–242. https://doi.org/ 10.19139/soic.v4i3.219.

  15. Koroliouk D.V. Multivariate statistical experiments with persistent non-linear regression and equilibrium. Theor. Probability and Math. Statist. 2016. Vol. 92. P. 71–79. https://doi.org/10.1090/tpms/983.

  16. Cybenko G.V. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems. 1989. Vol. 2, N 4. P. 303–314.

  17. Deng L. The MNIST database of handwritten digit images for machine learning research [best of the Web]. IEEE Signal Processing Magazine. 2012. Vol. 29, N 6. P. 141–142. https://doi.org/10.1109/MSP.2012.221147 7.




© 2023 Kibernetika.org. All rights reserved.