Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 330.115
T. Ermolieva1, P. Havlik2, A. Lessa-Derci-Augustynczik3, E. Boere4,
S. Frank5, T. Kahil6, G. Wang7, J. Balkovic8, R. Skalsky9,
C. Folberth10, N. Komendantova11, P.S. Knopov12



1 International Institute for Applied Systems Analysis, Laxenburg, Austria

ermol@iiasa.ac.at

2 International Institute for Applied Systems Analysis, Laxenburg, Austria

havlik.petr@gmail.com

3 International Institute for Applied Systems Analysis, Laxenburg, Austria

augustynczik@iiasa.ac.at

4 International Institute for Applied Systems Analysis, Laxenburg, Austria

boere@iiasa.ac.at

5 International Institute for Applied Systems Analysis, Laxenburg, Austria

frank@iiasa.ac.at

6 International Institute for Applied Systems Analysis, Laxenburg, Austria

kahil@iiasa.ac.at

7 China Agricultural University (CAU), Beijing, China

gangwang@cau.edu.cn

8 International Institute for Applied Systems Analysis, Laxenburg, Austria

balkovic@iiasa.ac.at

9 International Institute for Applied Systems Analysis, Laxenburg, Austria

skalsky@iiasa.ac.at

10 International Institute for Applied Systems Analysis, Laxenburg, Austria

folberth@iiasa.ac.at

11 International Institute for Applied Systems Analysis, Laxenburg, Austria

komendan@iiasa.ac.at

12 V.M. Glushkov Institute of Cybernetics of the NAS of Ukraine, Kyiv, Ukraine

knopov1@yahoo.com, knopov1@gmail.com

A NOVEL ROBUST META-MODEL FRAMEWORK
FOR PREDICTING CROP YIELD PROBABILITY
DISTRIBUTIONS USING MULTISOURCE DATA

Abstract. There is an urgent need to better understand and predict crop yield responses to weather disturbances, in particular, of extreme nature, such as heavy precipitation events, droughts, and heat waves, to improve future crop production projections under weather variability, extreme events, and climate change. In this paper, we develop quantile regression models for estimating crop yield probability distributions depending on monthly temperature and precipitation values and soil quality characteristics, which can be made available for different climate change projections. Crop yields, historical and those simulated by the EPIC model, are analyzed and distinguished according to their levels, i.e., mean and critical quantiles. Then, the crop yield quantiles are approximated by fitting separate quantile-based regression models. The developed statistical crop yield meta-model enables the analysis of crop yields and respective probabilities of their occurrence as a function of the exogenous parameters such as temperature and precipitation and endogenous, in general, decision-dependent parameters (such as soil characteristics), which can be altered by land use practices. Statistical and machine learning models can be used as reduced form scenario generators (meta-models) of stochastic events (scenarios), as a submodel of more complex models, e.g., Integrated Assessment model (IAM) GLOBIOM.

Keywords: extreme events, climate change, food security, crop yields projections, probability distributions, quantile regressions, robust estimation and machine learning, two-stage STO.


full text

REFERENCES

  1. Clarke B., Otto F., Stuart-Smith R., Harrington L. Extreme weather impacts of climate change: An attribution perspective. Environmental Research: Climate. 2022. Vol. 1, Iss. 1. 012001. https://doi.org/10.1088/2752-5295/ac6e7d .

  2. Hatfield J.L., Boote K.J., Kimball B.A., Ziska L.H., Izaurralde R.C., Ort D., Thomson A.M., Wolfe D.W. Climate impacts on agriculture: Implications for crop production. Agron. J. 2011. Vol. 103, Iss. 2. P. 351–370.

  3. Hatfield J.L., Prueger J.H. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes. 2015. Vol. 10, Part A. P. 4–10.

  4. Pareek N. Climate change impact on soils: adaptation and mitigation. MOJ Eco. Environ. Sci. 2017. Vol. 2, Iss. 3. P. 136–139. https://doi.org/10.15406/mojes.2017.02.00026.

  5. Jagermeyr J., van der Velde M., SkalskН R., Xiong W., Folberth C., Khabarov N., Smirnov A., Mueller N.D., Obersteiner M. Global wheat production potentials and management flexibility under the representative concentration pathways. Global and Planetary Change. 2014. Vol. 122. P. 107–121. https://doi.org/10.1016/j.gloplacha.2014.08.010 .

  6. Jagermeyr J., Velde M., Schmid E., SkalskН R., Khabarov N., Obersteiner M., Strmer B., Xiong W. Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation. Agric. Syst. 2013. Vol. 120. P. 61–75.

  7. Jones C.A., Dyke P.T., Williams J.R., Kiniry J.R., Benson V.W., Griggs R.H. EPIC: An operational model for evaluation of agricultural sustainability. Agric. Syst. 1991. Vol. 37, Iss. 4. P. 341–350.

  8. Williams J.R. The erosion productivity impact calculator (EPIC) model: A case history. Philosophical Transactions: Biological Sciences. 1990. Vol. 329, Iss. 1255. P. 421–428.

  9. Drummond S.T., Sudduth K.A., Joshi A., Birrell S.J., Kitchen N.R. Statistical and neural methods for site-specific yield prediction. Transactions of the ASAE. 2003. Vol. 46, Iss. 1. P. 5–14. https://doi.org/10.13031/2013.12541.

  10. Van Klompenburg T., Kassahun A., Catal C. Crop yield prediction using machine learning: A systematic literature review. Computers and Electronics in Agriculture. 2020. Vol. 177. 105709. https://doi.org/10.1016/j.compag.2020.105709.

  11. Muller C., Elliott J., Chryssanthacopoulos J., Arneth A., Balkovic J., Ciais P. et al. Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications. Geosci. Model Dev. 2017. Vol. 10, Iss. 4. P. 1403–1422. https://doi.org/10.5194/gmd-10-1403-2017 .

  12. Van der Goot E., Supit I., Boogaard H. L., van Diepen K., Micale F., Orlandi S., Otten H., Geuze M., Schulze D. Methodology of the MARS crop yield forecasting system. Vol. 1: Meteorological data collection, processing and analysis. Luxembourg: European Commission (EC), 2004. 100 p.

  13. Li X., Ren J., Niu B., Wu H. Grain area yield index insurance ratemaking based on time-space adjustment in China. Sustainability. 2020. Vol. 12, Iss. 6. 2491. https://doi.org/10.3390/su1206249 .

  14. Okhrin O., Odening M., Xu W. Systemic weather risk and crop insurance: The case of China. J. Risk Insur. 2013. Vol. 80, N 2. P. 351–372.

  15. Ermoliev Y.M., Ermolieva T.Y., MacDonald G.J., Norkin V.I. Insurability of catastrophic risks: the stochastic optimization model. Optimization. 2000. Vol. 47, N 3. P. 251–265.

  16. Ermoliev Y.M., Ermolieva T.Y., MacDonald G.J., Norkin V.I. Stochastic optimization of insurance portfolios for managing exposure to catastrophic risks. Annals of Operations Research. 2000. Vol. 99, N 1. P. 207–225.

  17. Havlik P., Schneider U.A., Schmid E., Boettcher H., Fritz S., Skalsky R., Aoki K., de Cara S., Kindermann G., Kraxner F., Leduc S., McCallum I., Mosnier A., Sauer T., Obersteiner M. Global land-use implications of first and second generation biofuel targets. Energy Policy. 2011. Vol. 39. P. 5690–5702.

  18. Ermolieva T., Havlik P., Ermoliev Y., Mosnier A., Obersteiner M., Leclere D., Khabarov N., Valin H., Reuter W. Integrated management of land use systems under systemic risks and security targets: A Stochastic Global Biosphere Management Model. Journal of Agricultural Economics. 2016. Vol. 67, Iss. 3. P. 584–601.

  19. Ermolieva T., Havlik P., Ermoliev Y., Khabarov N., Obersteiner M. Robust management of systemic risks and food-water-energy-environmental security: Two-stage strategic-adaptive GLOBIOM model. Sustainability. 2021. Vol. 13, Iss. 2. 857. https://doi.org/10.3390/su13020857 .

  20. Ermolieva T., Havlik P., Frank S., Kahil T., J., SkalskН R., Ermoliev Y., Knopov P.S., Borodina O.M., Gorbachuk V.M. A risk-informed decision-making framework for climate change adaptation through robust land use and irrigation planning. Sustainability. 2022. Vol. 14, Iss. 3. 1430. https://doi.org/10.3390/su14031430.

  21. Ermolieva T., Ermoliev Y., Obersteiner M., Rovenskaya E. Two-stage nonsmooth stochastic optimization and iterative stochastic quasigradient procedure for robust estimation, machine learning and decision making. In: Resilience in the Digital Age. Roberts F.S., Sheremet I.A. (Eds). Cham: Springer, 2021. P. 45–74 https://doi.org/10.1007/978-3-030-70370-7_4 .

  22. Ermolieva T., Ermoliev Y., Havlik P., Lessa-Dersi-Augustynczik A., Komendantova N., Kahil T., Balkovic J., Skalsky R., Folberth C., Knopov P.S., Wang G. Connections between robust statistical estimation, robust decision making withtwo-stage stochastic optimization, and robust machine learning problems. Cybernetics and Systems Analysis. 2023. Vol. 59, N 3. P. 385–397. https://doi.org/10.1007/s10559-023-00573-3 .

  23. Ermoliev Y. Stochastic quasigradient methods. In: Encyclopedia of Optimization. Pardalos P.M. (Ed.). New York: Springer Verlag, 2009. P. 3801–3807.

  24. Ermoliev Y. Two-stage stochastic programming: Quasigradient method. In: Encyclopedia of Optimization. Pardalos P.M. (Ed.). New York: Springer Verlag, 2009. P. 3955–3959.

  25. Ermoliev Y. Stochastic quasigradient methods in minimax problems. In: Encyclopedia of Optimization. Pardalos P.M. (Ed.). New York: Springer Verlag, 2009. P. 3813–3818.

  26. Ermoliev Y.M., Wets R.J.-B. Numerical Techniques for Stochastic Optimization. Heidelberg: Springer Verlag, 1988. URL: https://pure.iiasa.ac.at/id/eprint/3065/.

  27. Ermoliev Y.M., Gaivoronski A.A. Stochastic quasigradient methods for optimization of discrete event systems. Annals of Operation Research. 1992. Vol. 39. P. 1–39. https://doi.org/10.1007/ BF02060934.

  28. Ermoliev Y., Hordijk L. Global changes: Facets of robust decisions. In: Coping with Uncertainty: Modeling and Policy Issue. Marti K., Ermoliev Y., Makowski M., Pflug G. (Eds.). Berlin: Springer Verlag, 2003.

  29. Jagermeyr J., Gerten D., Heinke J., Schaphoff S., Kummu M., Lucht W. Water savings potentials of irrigation systems: global simulation of processes and linkages. Hydrol. Earth Syst. Sci. 2015. Vol. 19, Iss. 7. P. 3073–3091.

  30. Folberth C., Baklanov A., Balkovic J., Skalsky R., Khabarov N., Obersteiner M. Spatio-temporal downscaling of gridded crop model yield estimates based on machine learning. Agricultural and Forest Meteorology. 2019. Vol. 264. P. 1–15. https://doi.org/10.1016/j.agrformet.2018.09.021 .

  31. Williams J.R., Jones C.A., Dyke P.T. A modelling approach to determining the relationship between erosion and soil productivity. Trans. ASAE. 1984. Vol. 27, Iss. 1. P. 129–144.

  32. Rosenzweig C., Jones J.W., Hatfield J.L., Ruane A.C., Boote K.J., Thorburn P., Antle J.M., Nelson G.C., Porter C., Janssen S., Asseng S., Basso B., Ewert F., Wallach D., Baigorria G., Winter J.M. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. Agric. For. Meteorol. 2013. Vol. 170. P. 166–182.

  33. Kahil M.T., Dinar A., Albiac J. Modeling water scarcity and droughts for policy adaptation to climate change in arid and semiarid regions. Journal of Hydrology. 2015. Vol. 522. P. 95–109.

  34. Kahil M.T., Connor J.D., Albiac J. Efficient water management policies for irrigation adaptation to climate change in Southern Europe. Ecol. Econ. 2015. Vol. 120(C). P. 226–233.

  35. Golodnikov A.N., Ermoliev Y.M., Ermolieva T.Y., Knopov P.S., Pepelyaev V.A. Integrated modeling of food security management in Ukraine. II. Models for structural optimization of agricultural production under risk. Cybernetics and Systems Analysis. 2013. Vol. 49, N 2. P. 217–228. https://doi.org/10.1007/s10559-013-9503-6.

  36. Zhu K., Ran H., Wang F., Ye X., Niu L., Schulin R., Wang G. Conservation tillage faclitated soil carbon sequestration through diversified carbon conversions. Agriculture, Ecosystems and Environment. 2022. Vol. 337. 108080.

  37. Genovese G., Bettio M. (Eds.). Methodology of the MARS Crop Yield Forecasting System. Vol. 4 Statistical Data Collection, Processing and Analysis. Luxembourg: European Commision (EC).

  38. Werner M. Shuttle Radar Topography Mission (SRTM), Mission overview. J. Telecom (Frequenz). 2001. Vol. 55. P. 75–79.

  39. SkalskН R., Z., J., Schmid E., Fuchs M., Moltchanova E., Kindermann G., Scholtz P. GEO-BENE Global Database for Bio-Physical Modeling v. 1.0 (Concepts, Methodologies and Data). 2008. URL: https://geo-bene.project-archive.iiasa.ac.at/files/ Deliverables/Geo-BeneGlbDb10(DataDescription).pdf .

  40. Klein J.A., Harte J., Zhao X.-Q. Experimental warming, not grazing, decreases rangeland quality on the Tibetan plateau. Ecol. Appl. 2007. Vol. 17, Iss. 2. P. 541–557.

  41. Sacks W.J., Kucharik C.J. Crop management and phenology trends in theU.S. corn belt: Impacts on yields, evapotranspiration and energy balance. Agric. For. Meteor. 2011. Vol. 151, Iss. 7. P. 882–894.




© 2023 Kibernetika.org. All rights reserved.