DOI
10.34229/KCA2522-9664.25.5.3
UDC 004.8
V.M. Sineglazov
National Aviation University, Kyiv, Ukraine,
svm@nau.edu.ua
K.S. Lesohorskyi
National Technical University “Igor Sikorsky Kyiv Polytechnic Institute,” Kyiv, Ukraine,
lesogor.kirill@gmail.com
SEMI-SUPERVISED PREDICTION OF MULTIMODAL VEHICLE TRAJECTORY
BASED ON TRANSFORMERS
Abstract. The prediction of vehicle motion trajectories using artificial neural networks is investigated. Existing approaches and methods for predicting vehicle motion trajectories, along with their limitations, are considered. The traffic prediction problem is presented in a scene-centric setting, using a simplified bird’s eye view (BEV) input representation and an occupancy map output representation. A semi-supervised physical maneuver model is proposed to reprocess the unimodal dataset and generate a multimodal dataset, thereby solving the problem of limited dataset for training. A modified version of the Transformer artificial neural network architecture is used for trajectory prediction. The Transformer architecture is also further modified to handle large spatio-temporal relationships. The efficiency of the proposed method is compared with the two best agent-centric and scene-centric algorithms. The proposed method improves the efficiency of known methods by up to 40% in certain metrics and achieves results comparable to the best agent-centric approaches.
Keywords: motion prediction, trajectory prediction, semi-supervised learning, transformers, deep learning.
full text
REFERENCES
- 1. Phillips D.J., Wheeler T.A, Kochenderfer M.J. Generalizable intention prediction of human drivers at intersections. IEEE Intelligent Vehicles Symposium (IV). (Los Angeles, 11–14 June, 2017). IEEE, 2017. Р. 1665–1670. https://doi.org/10.1109/IVS.2017.7995948.
- 2. Ammoun S., Nashashibi F. Real time trajectory prediction for collision risk estimation between vehicles. IEEE Intelligent Computer Communication and Processing. (Cluj-Napoca, 27–29 Aug., 2009). IEEE, 2009. Р. 417–422. https://doi.org/10.1109/ICCP.2009.5284727.
- 3. Hermes C., Wohler C., Schenk K., Kummert F. Long-term vehicle motion prediction. IEEE Intelligent Vehicles Symposium. (Xi'an, 03–05 June, 2009). IEEE, 2009. Р. 652–657. https://doi.org/10.1109/IVS.2009.5164354.
- 4. Brand M., Oliver N., Pentland A. Coupled hidden Markov models for complex action recognition. IEEE Conference on Computer Vision and Pattern Recognition. (San Juan, 17–19 June, 1997). IEEE, 1997. P. 994–999. https://doi.org/10.1109/CVPR.1997.609450.
- 5. Mozaffari S., Al-Jarrah O. Y., Dianati M., Jennings P., Mouzakitis A. Deep learning-based vehicle behaviour prediction for autonomous driving applications: A review. IEEE Transactions on Intelligent Transportation Systems. 2020. Vol. 23, N 1. P. 33–47. https://doi.org/10.1109/TITS.2020.3012034.
- 6. Zyner A., Worrall S., Nebot E. A recurrent neural network solution for predicting driver intention at unsignalized intersections. IEEE Robotics and Automation Letters. 2018. Vol. 3, N 3. P. 1759–1764. https://doi.org/10.1109/LRA.2018.2805314.
- 7. Hu Y., Jia X., Tomizuka M., Zhan W. Causal-based time series domain generalization for vehicle intention prediction. IEEE 2022 International Conference on Robotics and Automation (ICRA). (Philadelphia, 23–27 May, 2022). IEEE, 2022. P. 7806–7813. https://doi.org/10.1109/ICRA46639.2022.9812188.
- 8. Chai Y., Sapp B., Bansal M., Anguelov D. Multipath: Multiple probabilistic anchor trajectory hypotheses for behavior prediction. 2020. arXiv preprint arXiv:1910.05449. https://doi.org/10.48550/arXiv.1910.05449.
- 9. Luo W., Yang B., Urtasun R. Fast and furious: Real time end-to-end 3d detection, tracking and motion forecasting with a single convolutional net. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (Salt Lake City, 2018). IEEE, 2018. P. 3569–3577.
- 10. Nayakanti N., Al-Rfou R., Zhou A., Goel K., Refaat K., Sapp B. Wayformer: Motion forecasting via simple & efficient attention networks. IEEE International Conference on Robotics and Automation (ICRA). (London, 29 May–02 June, 2023). IEEE, 2023. P. 2980–2987. https://doi.org/10.1109/ICRA48891.2023.10160609.
- 11. Lu J., Zhan W., Tomizuka M., Hu Y. Towards Generalizable and Interpretable Motion Prediction: A Deep Variational Bayes Approach. Proc. 27th International Conference on Artificial Intelligence and Statistics. (Valencia, 2024). IEEE, 2024. P. 4717–4725.
- 12. Ju C., Wang Z., Long C., Zhang X., Cong G., Chang. D. Interaction-aware Kalman neural networks for trajectory prediction. IEEE Intelligent Vehicles Symposium (IV). (Las Vegas, 19 Oct.–13 Nov., 2020). IEEE, 2020. P. 1793–1800. https://doi.org/10.1109/IV47402.2020.9304764.
- 13. Zhou Z., Wang J., Li Y., Huang K. Query-centric trajectory prediction. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). (Vancouver, 17–24 June, 2023). IEEE, 2023. https://doi.org/10.1109/CVPR52729.2023.01713.
- 14. Hoermann S., Bach M., Dietmayer K. Dynamic occupancy grid prediction for urban autonomous driving: A deep learning approach with fully automatic labeling. IEEE International Conference on Robotics and Automation (ICRA). (Brisbane, 21–25 May, 2018). IEEE, 2018. P. 2056–2063. https://doi.org/10.1109/ICRA.2018.8460874.
- 15. Zgurovsky M., Sineglazov V., Chumachenko E. Classification and analysis topologies known artificial neurons and neural networks. Artificial Intelligence Systems Based on Hybrid Neural Networks. Cham: Springer, 2020. P. 1–58. https://doi.org/10.1007/978-3-030-48453-8_1.
- 16. Dai S., Li L., Li. Z. Modeling vehicle interactions via modified lstm models for trajectory prediction. IEEE Access. 2019. Vol. 7. P. 38287–38296. https://doi.org/10.1109/ACCESS.2019.2907000.
- 17. Diehl F., Brunner T., Le M.T., Knoll A. Graph neural networks for modelling traffic participant interaction. IEEE Intelligent Vehicles Symposium (IV). (Paris, 09–12 June, 2019). IEEE, 2019. P. 695–701. https://doi.org/10.1109/IVS.2019.8814066.
- 18. Sineglazov V., Kot A. Design of hybrid neural networks of the ensemble structure. URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3807474 (date of application: 11.06.2025). http://dx.doi.org/10.2139/ssrn.3807474.
- 19. Press O., Smith N.A., Levy O. Improving transformer models by reordering their sublayers. 2019. arXiv preprint arXiv:1911.03864. https://doi.org/10.48550/arXiv.1911.03864.
- 20. James G., Witten D., Hastie T., Tibshirani R. Resampling methods. An Introduction to Statistical Learning: with Applications in Python. Cham: Springer International Publishing, 2023. P. 201–228. https://doi.org/10.1007/978-3-031-38747-0_5.
- 21. Zhang N., Canini K., Silva S., Gupta M. Fast linear interpolation. ACM Journal on Emerging Technologies in Computing Systems (JETC). 2023. Vol. 17, N 2. P. 1–15. https://doi.org/10.1145/342318.
- 22. Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A., Polosukhin I. Attention is all you need. Advances in neural information processing systems. 2017. Vol. 30. P. 5998–6008. https://doi.org/10.48550/arXiv.1706.03762.
- 23. Wilson B., Qi W., Agarwal T., Lambert J., Singh J., Khandelwal S, Hays J., et al. Argoverse 2: Next generation datasets for self-driving perception and forecasting. Proc. Neural Information Processing Systems Track on Datasets and Benchmarks. 2021. https://doi.org/10.48550/arXiv.2301.00493.
- 24. Zgurovsky M., Sineglazov V., Chumachenko E. Classification and analysis of multicriteria optimization methods. Artificial Intelligence Systems Based on Hybrid Neural Networks: Theory and Applications. Cham: Springer, 2020. P. 59–174. https://doi.org/10.1007/978-3-030-48453-8_2.
- 25. Sineglazov V., Riazanovskiy K., Chumachenko O. Multicriteria conditional optimization based on genetic algorithms. System research and information technologies. 2020. Vol. 7, N 3. P. 89–104. https://doi.org/10.20535/SRIT.2308-8893.2020.3.07.
- 26. Zhou Z., Ye L., Wang J., Wu K., Lu K. Hivt: Hierarchical vector transformer for multi-agent motion prediction. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). (New Orleans, 18–24 June, 2022). IEEE, 2022. P. 8823–8833. 10.1109/CVPR52688. 2022.00862.
- 27. Varadarajan B., Hefny A., Srivastava A., Refaat K., Nayakanti N., Cornman A., Sapp B., et al. Multipath++: Efficient information fusion and trajectory aggregation for behavior prediction. Proc. IEEE 2022 International Conference on Robotics and Automation (ICRA). (Philadelphia, 23–27 May, 2022). IEEE, 2022. P. 7814–7821. https://doi.org/10.1109/ICRA46639.2022.9812107.