DOI
10.34229/KCA2522-9664.26.1.7
УДК 519.6
Д.А. КЛЮШИН
Київський національний університет імені Тараса Шевченка, Київ, Україна,
dmytroklyushin@knu.ua
В.А. КОЛЕСНИКОВ
Київський національний університет імені Тараса Шевченка, Київ, Україна,
valerii.kolesnykov@knu.ua
С.І. ЛЯШКО
Київський національний університет імені Тараса Шевченка, Київ, Україна,
sergiylyashko@gmail.com
ЗАДАЧА МАСОПЕРЕНЕСЕННЯ З МЕЖЕЮ НАСИЧЕННЯ
ТА ОБМЕЖЕННЯМИ НА ПОТОКИ У ПОРИСТІЙ
СИСТЕМІ ЗІ СТРУКТУРОЮ ГРАФУ
Анотація. У роботі виведено рівняння, що описують процес масоперенесення в пористому середовищі на графі з додатковими обмеженнями на величину потоку маси на деяких ребрах, що може слугувати моделлю іригаційної системи з кранами на деяких трубах. Сформульовано та змодельовано задачу масоперенесення в пористому середовищі на графі з додатковими обмеженнями на величину потоку на ребрах. Обґрунтовано існування розв’язку цієї задачі для випадку ненасиченого середовища як початкової умови та крайових умов, що монотонно зростають. Побудовано числовий метод для апроксимації розв’язку сформульованої задачі, який базується на числових методах для розв’язання одновимірних задач масоперенесення та враховує обмеження на величину потоку. Наведено результати обчислювальних експериментів.
Ключові слова: рівняння Річардса–Клюта, математичне моделювання, масоперенесення, графи.
повний текст
СПИСОК ЛІТЕРАТУРИ
- 1. Srivastava R., Jim Yeh T.-C. Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layered soil. Water Resources Research. 1991. Vol. 27, N 5. P. 753–762. https://doi.org/10.1029/90WR02772.
- 2. Broadbridge P., Daly E., Goard J. Exact solutions of the Richards equation with nonlinear plant-root extraction. Water Resources Research. 2017. Vol. 53. P. 9679–9691. https://doi.org/10.1002/2017WR021097.
- 3. De Luca D.L., Cepeda J.M. Procedure to obtain analytical solutions of one-dimensional Richards’ equation for infiltration in two-layered soils. Journal of Hydrologic Engineering. 2016. Vol. 21, N 7. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001356.
- 4. Farthing M.W., Ogden F.L. Numerical solution of Richards’ equation: A review of advances and challenges. Soil Sci. Soc. Am. J. 2017. Vol. 81. P. 1257–1269. https://doi.org/10.2136/sssaj2017.02.0058.
- 5. Zha Y., Yang J., Zeng J., Tso C.-H.M., Zeng W., Shi L. Review of numerical solution of Richardson–Richards equation for variably saturated flow in soils. WIREs Water. 2019. Vol. 6, N 5. Article number e1364. https://doi.org/10.1002/wat2.1364.
- 6. Younes A., Hoteit H., Helmig R., Fahs M. A robust fully Mixed Finite Element model for flow and transport in unsaturated fractured porous media. Advances in Water Resources. 2022. Vol. 166. Article number 104259. https://doi.org/10.1016/j.advwatres.2022.104259.
- 7. Keita S., Beljadid A., Bourgault Y. Implicit and semi-implicit second-order time stepping methods for the Richards equation. Advances in Water Resources. 2021. Vol. 148. Article number 103841. https://doi.org/10.48550/arXiv.2105.05224.
- 8. Zhu S., Wu L., Cheng P., Zhou J. Application of modified iterative method to simulate rainfall infiltration in unsaturated soils. Computers and Geotechnics. 2022. Vol. 148. Article number 104816. https://doi.org/10.1016/j.compgeo.2022.104816.
- 9. Shah S.S., Mathur S., Chakma S. Numerical modeling of one-dimensional variably saturated flow in a homogeneous and layered soil–water system via mixed form Richards equation with Picard iterative scheme. Model. Earth Syst. Environ. 2023. Vol. 9. P. 2027–2037. https://doi.org/10.1007/s40808-022-01588-z.
- 10. Bassetto S., Cancės C., Enchėry G., Tran Q.H. Robust Newton solver based on variable switch for a finite volume discretization of Richards equation. In: Finite Volumes for Complex Applications IX — Methods, Theoretical Aspects, Examples. FVCA 2020. Klfkorn R., Keilegavlen E., Radu F.A., Fuhrmann J. (Eds.). Springer Proceedings in Mathematics & Statistics. Cham: Springer, 2020. Vol. 323. P. 385–393. https://doi.org/10.1007/978-3-030-43651-3_35.
- 11. Orgogozo L. RichardsFoam3: A new version of RichardsFoam for continental surfaces hydrogeology modeling. Computer Physics Communications. 2022. Vol. 270. Article number 108182. https://doi.org/10.1016/j.cpc.2021.108182.
- 12. HGS Theory Manual. Waterloo, ON, Canada: Aquanty Inc. 2025. URL: https://hydrogeosphere.blob.core.windows.net/hydrogeosphere/hgs/hydrosphere_theory.pdf.
- 13. Bohaienko V.O., Gladky A.V. Multithreading performance simulating fractional-order moisture transport on AMD EPYC. Journal of Numerical and Applied Mathematics. 2022. N 2. P. 174–182.
- 14. Bulavatsky V.M., Bohaienko V.O. Boundary-value problems for space-time fractional differential filtration dynamics in fractured-porous media. Cybernetics and Systems Analysis. 2022. Vol. 58, N 3. P. 358–371. https://doi.org/10.1007/s10559-022-00468-9.
- 15. Колесников В.А. Теорема iснування для задачi масопереносу на графi. Математичне та комп’ютерне моделювання. Серiя: фiзико-математичнi науки. 2023. T. 24. С. 70–80. https://doi.org/10.32626/2308-5878.2023-24.70-80.
- 16. Jang I.-N., Ahn Y.-S. Sintered wick heat pipes with excellent heat transfer capabilities — case study. Energies. 2024. Vol. 17, N 5. Article number 1113. https://doi.org/10.3390/en17051113.
- 17. Rosenfeld J.H., Lindemuth J.E. Heat transfer in sintered groove heat pipes. Proc. of the 11th International Heat Pipe Conference. Tokyo, Japan, 1999.
- 18. Saadatian S., Wong H. Analytic solutions of heat and mass transfer in flat heat pipes with porous wicks. International Journal of Heat and Mass Transfer. 2023. Vol. 205. Article number 123870. https://doi.org/10.1016/j.ijheatmasstransfer.2023.123870.
- 19. Колесников В.А. Модифікація методу Томаса для розв’язання системи лінійних алгебраїчних рівнянь на графі. Журнал обчислювальної та прикладної математики. 2025. № 1. С. 31–48. https://doi.org/10.17721/2706-9699.2025.1.04.
- 20. Tymoshenko A., Klyushin D., Lyashko S. Optimal control of point sources in Richards–Klute equation. In: Advances in Computer Science for Engineering and Education (2019). ICCSEEA 2018. Hu Z., Petoukhov S., Dychka I., He M. (Eds). Advances in Intelligent Systems and Computing. Cham: Springer, 2019. Vol 754. P. 194–203. https://doi.org/10.1007/978-3-319-91008-6_20.
- 21. Lyashko S., Klyushin D., Tymoshenko A. Optimal control of buried point sources in a two-dimensional Richards–Klute equation. In: Mathematical Modeling and Simulation of Systems. MODS 2021. Shkarlet S. et al. (Eds.). Lecture Notes in Networks and Systems. Cham: Springer, 2022. Vol. 344. P. 59–71. https://doi.org/10.1007/978-3-030-89902-8_5.
- 22. Sergienko I.V., Petryk M.R., Fraissard J., Leclerc S. Highly efficient methods of the identification of competitive diffusion parameters in inhomogeneous media of nanoporous particles. Cybernetics and Systems Analysis. 2015. Vol. 51, N 4. P. 529–546. https://doi.org/10.1007/s10559-015-9744-7.
- 23. Petryk M.R., Boyko I.V., Khimich O.M., Petryk M.M. High-performance supercomputer technologies of simulation and identification of nanoporous systems with feedback for n-component competitive adsorption. Cybernetics and Systems Analysis. 2021. Vol. 57, N 2. P. 316–328. https://doi.org/10.1007/s10559-021-00357-7.
- 24. Petryk M.R., Boyko I.V., Khimich O.M., Petryk M.M. High-performance supercomputer technologies of simulation of nanoporous feedback systems for adsorption gas purification. Cybernetics and Systems Analysis. 2020. Vol. 56, N 5. P. 835–847. https://doi.org/10.1007/s10559-020-00304-y.