DOI
10.34229/KCA2522-9664.26.1.8
UDC 681.5.015:656.078
A.P. Rotshtein
Vasyl’ Stus Donetsk National University, Vinnytsia, Ukraine;
Lev Academic Center, Jerusalem College of Technology, Jerusalem, Israel,
rothstei@g.jct.ac.il
A.A. Kashkanov
Vinnytsia National Technical University, Vinnytsia, Ukraine,
a.kashkanov@vntu.edu.ua
O.V. Zelinska
Mykhailo Kotsyubinsky Vinnytsia State Pedagogical University, Vinnytsia, Ukraine,
o.zelinska@donnu.edu.ua
D.I. Katielnikov
Vinnytsia National Technical University, Vinnytsia, Ukraine,
fuzzy2dik@gmail.com
FUZZY SCENARIO ANALYSIS OF GENERALIZED DYNAMIC SYSTEMS
Abstract. The article proposes an approach to integrating a fuzzy cognitive map (FCM) and
the Bellman–Zadeh principle of decision making under uncertainty to select control options for
a generalized dynamic system, taking into account the mutual influences of criteria and controlled variables.
To coordinate the results of modeling using the FCM and the axiomatics of the Bellman–Zadeh principle,
a membership function to perfection is introduced, which ensures the aggregation of the criteria vector by crossing the corresponding fuzzy sets.
The proposed approach is illustrated by an example of comparing reliability management scenarios for a road transport enterprise.
Keywords: generalized dynamic system, interaction of variables, scenario modeling, fuzzy cognitive map, Bellman–Zadeh principle, road transport enterprise.
full text
REFERENCES
- 1. Glushkov V.M. Introduction to ACS. Kyiv: Technika, 1974. 320 p.
- 2. Bellman R.E., Zadeh L.A. Decision making in a fuzzy environment. Management Science. 1970. Vol. 17, N 4. P. B141–B164. https://doi.org/10.1287/mnsc.17.4.B141.
- 3. Saaty T.L. The analytic hierarchy process: Planning, priority setting, resource allocation. New York: McGraw-Hill, 1980. 287 p.
- 4. Borisov A.N., Krumberg O.A., Fedorov I.P. Decision Making Based on Fuzzy Models. Examples of Use. Riga: Zinatne, 1990. 184 p.
- 5. Rotshtein A.P., Rakytyanska H.B. Fuzzy evidence in identification, forecasting and diagnosis. Heidelberg: Springer, 2012. 314 p. https://doi.org/10.1007/978-3-642-25786-5.
- 6. Rotshtein A.P. Fuzzy multicriteria choice among alternatives: Worst-case approach. Journal of Computer and Systems Sciences International. 2009. Vol. 48. P. 379–383. https://doi.org/10.1134/S106423070903006X.
- 7. Kosko B. Fuzzy cognitive maps. International Journal of Man-Machine Studies. 1986. Vol. 24, Iss. 1. P. 65–75. https://doi.org/10.1016/S0020-7373(86)80040-2.
- 8. Rotshtein A., Katielnikov D., Kashkanov A. A fuzzy cognitive approach to ranking of factors affecting the reliability of man-machine systems. Cybernetics and Systems Analysis. 2019. Vol. 55, N 6. P. 958–966. https://doi.org/10.1007/s10559-019-00206-8.
- 9. Rotshtein A.P., Katelnikov D.I. Fuzzy cognitive map vs regression. Cybernetics and Systems Analysis. 2021. Vol. 57, N 4. P. 605–616. https://doi.org/10.1007/s10559-021-00385-3.
- 10. Rotshtein A., Katelnikov D., Pustylnik L., Polin B. Reliability analysis of man-machine systems using fuzzy cognitive mapping with genetic tuning. Risk Analysis. 2022. Vol. 43, Iss. 5. P. 958–978. https://doi.org/10.1111/risa.13959.
- 11. Rotshtein A., Yosef A., Neskorodeva T., Katielnikov D. Fuzzy cognitive map and mean square method in empirical modeling: Application in economics. Expert Systems with Applications. 2024. Vol. 247. Article number 123176. https://doi.org/10.1016/j.eswa.2024.123176.
- 12. Zadeh L.A. Fuzzy sets. Information and Control. 1965. Vol. 8, Iss. 3. P. 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X.
- 13. Rotshtein A. Reliability-based design of human performance conditions using fuzzy perfection. Cybernetics and Systems Analysis. 2019. Vol. 55, N 2. P. 240–252. https://doi.org/10.1007/s10559-019-00128-5.
- 14. Safonov I.V. Optimization design of structural-algorithmic systems. Kyiv: Znanie, 1978. 36 p.
- 15. Yager R. Multiple objective decision-making using fuzzy sets. International Journal of Man-Machine Studies. 1977. Vol. 9, Iss. 4. P. 375–382. https://doi.org/10.1016/S0020-7373(77)80008-4.