DOI
10.34229/KCA2522-9664.26.1.10
UDC 519.8
S. Hoskova-Mayerova
University of Defence, Brno, Czech Republic,
sarka.mayerova@unob.cz
S.O. Mashchenko
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine,
s.o.mashchenko@gmail.com
ORDERED WEIGHTED AVERAGING OPERATOR
FOR A FUZZY SET OF EXPERTS
Abstract. This paper investigates the ordered weighted averaging operator (OWA) in the case where the importances of experts are given by the degrees of membership in a fuzzy set. It is shown that the value of the OWA operator forms a type-2 fuzzy set. The corresponding type-2 membership function of this T2FS is given. It is proved that the type-2 fuzzy set of the OWA operator value can be decomposed according to the secondary membership grades into a collection of fuzzy numbers with corresponding degrees of truth. Each of these fuzzy numbers is the OWA operator value for a crisp set of experts. This set is the corresponding cut of the initial fuzzy set of experts. An illustrative example is included.
Keywords: aggregation, group decision-making, ordered weighted averaging operator, type 2 fuzzy set.
full text
REFERENCES
- 1. Yager R.R. On ordered weighted averaging aggregation operators in multicriteria decision-making. IEEE Transactions on Systems Man and Cybernetics. 1988. Vol. 18, N 1. P. 183–190. https://doi.org/10.1109/21.87068.
- 2. Marichal J.L., Mathonet P. A characterization of the ordered weighted averaging functions based on the ordered bisymmetry property. IEEE Transactions on Fuzzy Systems. 1999. Vol. 7, N 1. P. 93–96. https://doi.org/10.1109/91.746319.
- 3. Salido J.M. Fernndez, Murakami S. Extending Yager’s orness concept for the OWA aggregators to other mean operators. Fuzzy Sets and Systems. 2003. Vol. 139, N 3. P. 515–542. https://doi.org/10.1016/S0165-0114(02)00369-X.
- 4. Yager R.R. Soft Aggregation methods in case based reasoning. Applied Intelligence. 2004. Vol. 21. P. 277–288. https://doi.org/10.1023/B:APIN.0000043560.57137.20.
- 5. Xu Z. Group Decision making with triangular fuzzy linguistic variables. In: Yin H., Tino P., Corchado E., Byrne W., Yao X. (Eds.). Intelligent Data Engineering and Automated Learning - IDEAL 2007. Lecture Notes in Computer Science. Berlin; Heidelberg: Springer, 2007. Vol. 4881. P. 17–26. https://doi.org/10.1007/978-3-540-77226-2_3.
- 6. Hua Z., Xu Z., Mingfang N., Liu S. Generalized aggregation operators for intuitionistic fuzzy sets. International Journal of Intelligent Systems. 2010. Vol. 25, N 1. P. 1–30. https://doi.org/10.1002/int.20386.
- 7. Hala R., Mesiar R., Pcs J. Stupanov A. On representation and some properties of OFWA operators. Fuzzy Sets and Systems. 2025. Vol. 508. Article number 109333. https://doi.org/10.1016/j.fss.2025.109333.
- 8. Semenova N.V., Kolechkina L.N., Nagirna A.M. Vector optimization problems with linear criteria over a fuzzy combinatorial set of alternatives. Cybernetics and Systems Analysis. 2011. Vol. 47, N 2. P. 250–259. https://doi.org/10.1007/s10559-011-9307-5.
- 9. Chiclana F., Herrera-Viedma E., Herrera F., Alonso F. Some induced ordered weighted averaging operators and their use for solving group decision-making problems based on fuzzy preference relations. European Journal of Operational Research. 2007. Vol. 182, N 1. P. 383–399. https://doi.org/10.1016/j.ejor.2006.08.032.
- 10. Yu D., Pan T., Xu Z., Yager R.R. Exploring the knowledge diffusion and research front of OWA operator: a main path analysis. Artif. Intell. Rev. 2023. Vol. 56. P. 12233–12255. https://doi.org/10.1007/s10462-023-10462-y.
- 11. Csiszar O. Ordered weighted averaging operators: A short review. IEEE Systems, Man, and Cybernetics Magazine. 2021. Vol. 7, N 2. P. 4–12. https://doi.org/10.1109/MSMC.2020.3036378.
- 12. Bortot S., Pereira R.A.M. On linear combinations of binomial OWA functions. Fuzzy Sets and Systems. 2024. Vol. 488. Article number 109010. https://doi.org/10.1016/j.fss.2024.109010.
- 13. Prez-Fernndez R. Multivariate OWA functions. Fuzzy Sets and Systems. 2023. Vol. 466. Article number 108419. https://doi.org/10.1016/j.fss.2022.10.011
- 14. Yager R.R. Constrained OWA aggregation. Fuzzy Sets and Systems. 1996. Vol. 81, N 1. P. 89–101. https://doi.org/10.1016/0165-0114(95)00242-1.
- 15. Mashchenko S.O., Bovsunovskyi O.M. Effective alternatives to decision-making problems with a fuzzy set of preference relations. Journal of Automation and Information Sciences. 2013. Vol. 45, N 32–42. https://doi.org/10.1615/JAutomatInfScien.v45.i11.50.
- 16. Mashchenko S.O. Non-dominated alternatives for a fuzzy set of experts. Cybernetics and Systems Analysis. 2023. Vol. 59, N 3. P. 407–416. https://doi.org/10.1007/s10559-023-00575-1.
- 17. Mashchenko S.O. Sum of discrete fuzzy numbers with fuzzy set of summands. Cybernetics and Systems Analysis. 2021. Vol. 57, N 3. P. 374–382. https://doi.org/10.1007/s10559-021-00362-w.
- 18. Mashchenko S.O. Minimum of fuzzy numbers with a fuzzy set of operands. Cybernetics and Systems Analysis. 2022. Vol. 58, N 2. P. 210–219. https://doi.org/10.1007/s10559-022-00452-3.
- 19. Yager R.R. A procedure for ordering fuzzy numbers of the unit interval. Information Sciences. 1981. Vol. 24, N 2. P. 143–161. https://doi.org/10.1016/0020-0255(81)90017-7.
- 20. Zadeh L.A. The concept of a linguistic variable and its application to approximate reasoning — I. Information Sciences. 1975. Vol. 8, N 3. P. 199–249. https://doi.org/10.1016/0020-0255(75)90036-5.
- 21. Zadeh L.A. Quantitative fuzzy semantics. Information Sciences. 1971. Vol. 3, N 2. P. 159–176. https://doi.org/10.1016/S0020-0255(71)80004-X.
- 22. Mendel J.M., John R.I.B. Type-2 fuzzy sets made simple. IEEE Transactions on Fuzzy Systems. 2002. Vol. 10, N 2. P. 117–127. https://doi.org/10.1109/91.995115.
- 23. Harding J., Walker C., Walker E. The variety generated by the truth value algebra of T2FSs. Fuzzy Sets and Systems. 2010. Vol. 161, N 5. P. 735–749. https://doi.org/10.1016/j.fss.2009.07.004.