DOI
10.34229/KCA2522-9664.26.1.12
UDC 519.63; 519.64
M.R. Petryk
Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine,
mykhaylo_petryk@tntu.edu.ua
M.V. Bachynsky
Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine,
mbachynskyi@gmail.com
O.M. Khimich
V.M. Glushkov Institute of Cybernetics, National Academy of Sciences
of Ukraine, Kyiv, Ukraine,
khimich505@gmail.com
D.S. Bishchak
Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine,
dmytro_bishchak2806@tntu.edu.ua
A.-P. Legrand
PSL University (Paris Sciences & Lettres), Universite l’ESPCI Paris-PSL, Paris, France,
andre-pierre.legrand@espci.fr
INFORMATION SYSTEM FOR DIGITAL ANALYSIS OF MULTISENSOR COGNITIVE
EEG SIGNALS IN NEUROLOGICAL DISORDERS OF THE HUMAN ORGANISM
Abstract. The paper presents a software package for digital diagnostics of neuropsychological disorders, injuries, and diseases of the human cerebral cortex (CRC) caused by the consequences of combat and technogenic injuries, stress in extreme situations. A new methodology, a hybrid mathematical model and software for digital analysis of the cognitive effects of the multisensory network of EEG-neurosignals of CRC nodes on abnormal states of human behavior, have been developed, and a matrix algorithm has been implemented to determine the indicators of the multisensory effect of EEG-signals on the amplitude-frequency characteristics of tremor of the patient’s arm limb.
Keywords: tremor, abnormal neurological movements, software architecture, computer modeling, mathematical modeling, mathematical model, digital medical diagnostics, computer diagnostics, multisensory cognitive neurofeedback, electroencephalography, electroencephalographic signal, information system, datasets, time series, algorithm, object-oriented software, adaptive system, digital platform.
full text
REFERENCES
- 1. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: А systematic analysis for the Global Burden of Disease Study 2019. The Lancet Psychiatry. 2022. Vol. 9, N 2. Р. 137–150. https://doi.org/10.1016/S2215-0366(21)00395-3.
- 2. Matzilevich E.U., Daniel P.L., Little S. Towards therapeutic electrophysiological neurofeedback in Parkinson’s disease. Parkinsonism & Related Disorders. 2024. Vol. 121. Article number 106010. https://doi.org/10.1016/j.parkreldis.2024.106010.
- 3. Jenei A.Z., SztahЛ D., Valїlik I. Recognition analysis of spiral and straight-line drawings in tremor assessment. Biomedical Engineering/Biomedizinische Technik. 2025. Vol. 70, N 2. Р. 147–156. https://doi.org/10.1515/bmt-2023-0080.
- 4. Bichsel O., Imbach L., Gassert R. Opportunities and challenges for deep brain stimulation electrode-guided neurofeedback for symptom mitigation in neurological and psychiatric disorders. Journal of NeuroEngineering and Rehabilitation. 2025. Vol. 22, N 1. Article number 166. https://doi.org/10.1186/s12984-025-01701-0.
- 5. Owolabi M.O., Leonardi M., Bassetti C. et al. Global synergistic actions to improve brain health for human development. Nature Reviews Neurology. 2023. Vol. 19, N 6. Р. 371–383. https://doi.org/10.1038/s41582-023-00808-z.
- 6. Grnder G., Brand M., Mertens L.J. et al. Treatment with psychedelics is psychotherapy: beyond reductionism. The Lancet Psychiatry. 2024. Vol. 11, N 3. Р. 231–236. https://doi.org/10.1016/S2215-0366(23)00363-2.
- 7. Kohl S.H., Mehler D.M., Lhrs M. et al. Corrigendum: The potential of functional near-infrared spectroscopy-based neurofeedback — a systematic review and recommendations for best practice. Frontiers in Neuroscience. 2022. Vol. 16. Article number 907941. https://doi.org/10.3389/fnins.2022.907941.
- 8. Klein F., Kohl S.H., Lhrs M., Mehler D.M., Sorger B. From lab to life: challenges and perspectives of fNIRS for haemodynamic-based neurofeedback in real-world environments. Philosophical Transactions of the Royal Society B. 2024. Vol. 379, N 1915. Article number 20230087. https://doi.org/10.1098/rstb.2023.0087.
- 9. Abdulbaki A., El Masri J., Ghazi M. et al. Efficacy of deep brain stimulation for obsessive-compulsive disorder: Umbrella review and updated meta-analysis. Psychiatry Research. 2025. Vol. 351. Article number 116651. https://doi.org/10.1016/j.psychres.2025.116651.
- 10. Hellrung L., Kirschner M., Sulzer J. et al. Analysis of individual differences in neurofeedback training illuminates successful self-regulation of the dopaminergic midbrain. Nature: Communications Biology. 2022. Vol. 5, N 1. Article number 845. https://doi.org/10.1038/s42003-022-03756-4.
- 11. Peng Y., Ma C., Li M. et al. Intelligent devices for assessing essential tremor: a comprehensive review. Journal of Neurology. 2024. Vol. 271, N 8. Р. 4733–4750. https://doi.org/10.1007/s00415-024-12354-9.
- 12. Wolpaw J.R. Making brain-computer interfaces as reliable as muscles. Journal of Neural Engineering. 2025. Vol. 22. Article number 043001. https://doi.org/10.1088/1741-2552/addd47.
- 13. He S., Mostofi A., Syed E. et al. Subthalamic beta-targeted neurofeedback speeds up movement initiation but increases tremor in Parkinsonian patients. Elife. 2020. Vol. 9. Article number e60979. https://doi.org/10.7554/eLife.60979.
- 14. Longardner K., Satpathy Y., Litvan I., Haubenberger D. Impact of clinical neurophysiological assessment on diagnosis and management of tremor disorders. Clinical Neurophysiology Practice. 2025. Vol. 10. Р. 188–201. https://doi.org/10.1016/j.cnp.2025.05.003.
- 15. Legrand A.P., Rivals I., Richard A. et al. New insight in spiral drawing analysis methods — Application to action tremor quantification. Journal of Clinical Neurophysiology. 2017. Vol. 128, N 10. Р. 1823–1834. http://dx.doi.org/10.1016/j.clinph.2017.07.002.
- 16. Longardner K., Shen Q., Tang B. et al. An algorithm for automated measurement of kinetic tremor magnitude using digital spiral drawings. Digital Biomarkers. 2024. Vol. 8, N 1. Р. 140–148. https://doi.org/10.1159/000539529.
- 17. Mulroy E., Erro R., Bhatia K.P., Hallett M. Refining the clinical diagnosis of Parkinson’s disease. Parkinsonism & Related Disorders. 2024. Vol. 122. Article number 106041. https://doi.org/10.1016/j.parkreldis.2024.106041.
- 18. Ali S.M., Arjunan S.P., Peters J. et al. Wearable sensors during drawing tasks to measure the severity of essential tremor. Scientific Reports. 2022. Vol. 12, N 1. Article number 5242. https://doi.org/10.1038/s41598-022-08922-6.
- 19. Wang Y., Yang J., Cai M. et al. Application of optimized convolutional neural networks for early aided diagnosis of essential tremor: automatic handwriting recognition and feature analysis. Medical Engineering & Physics. 2023. Vol. 113. Article number 103962. https://doi.org/10.1016/j.medengphy.2023.103962.
- 20. Kim H.J., Jang H., Kim H.J., Na D.L., Yoon J.H. Kinematic characteristics in patients with subcortical vascular cognitive impairment: А quantitative analysis of digitized spiral drawing metrics. Scientific Reports. 2025. Vol. 15, N 1. Article number 3955. https://doi.org/10.1038/s41598-025-88604-1.
- 21. Angelini L., Paparella G., Bologna M. Distinguishing essential tremor from Parkinson’s disease: clinical and experimental tools. Expert Review of Neurotherapeutics. 2024. Vol. 24, N 8. Р. 799–814. https://doi.org/10.1080/14737175.2024.2372339.
- 22. Ishii N., Mochizuki Y., Shiomi K., Nakazato M., Mochizuki H. Spiral drawing: Quantitative analysis and artificial-intelligence-based diagnosis using a smartphone. Journal of the Neurological Sciences. 2020. Vol. 411. Article number 116723. https://doi.org/10.1016/j.jns.2020.116723.
- 23. Rajan R., Anandapadmanabhan R., Nageswaran S. et al. Automated analysis of pen-on-paper spirals for tremor detection, quantification, and differentiation. Annals of Movement Disorders. 2023. Vol. 6, N 1. Р. 17–25. https://doi.org/10.4103/aomd.aomd_50_22.
- 24. Lupenko S., Petryk M., Legrand A.P., Khimich O. High-performance technologies of modeling and identification of complex multi-component systems and processes. Studies and Monographs. z.594. OpolБ, Poland: Scientific Publishing of University Politechnika Opolska, 2024. 202 p.
- 25. Petryk M., Gancarczyk T., Khimich O. Methods of mathematical modeling and identification of complex processes and systems on the basis of high-performance calculations (neuro- and nanoporous feedback cyber systems, models with sparse structure data, parallel computations). Bielsko-Biala, Poland: Scientific Publishing University of Bielsko-Biala, 2021. 194 p.
- 26. Petrik M.R., Chikrii A.A., Mudrik I.Y. Modeling methods and identification of parameters of non-uniform abnormal neurological movements in multicomponent neurobiosystems with cognitive feedback. International scientific and technical journal "Problems of Control and Informatics". 2021. No. 3. pp. 18–33.