Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
KIBERNETYKA TA SYSTEMNYI ANALIZ
International Theoretical Science Journal
-->

DOI 10.34229/KCA2522-9664.26.1.13
UDC 682.32+537.8

M. Primin
V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine,
Kyiv, Ukraine, priminma@meta.ua

I. Nedayvoda
V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine,
Kyiv, Ukraine, igorvlad63@meta.ua


ALGORITHMS AND RESULTS OF NUMERICAL
SIMULATION: CALIBRATION OF MULTICHANNEL
SQUID GRADIOMETRIC SYSTEMS

Abstract. Measurement algorithms have been developed and a numerical simulation of data processing was performed to adjust a multi-channel tensor SQUID system. Measurement algorithms involve changing the spatial orientation of the magnetic signal source or measuring channels. Measurement algorithms in a uniform magnetic field of a Helmholtz coil system are considered. The proposed algorithm assumes that the distribution of values of spatial invariants of the magnetic signal is used to evaluate the obtained results. This allows us to explicitly estimate the systematic errors in the analysis of magnetic signals. The results of magnetic field source localization are presented, which show a significant increase in accuracy when using the proposed algorithm for processing magnetic signals.

Keywords: SQUID sensor, magnetometric system, information technology.


full text

REFERENCES

    • 1. The SQUID handbook. Clarke J., Braginski A.I. (Eds.). Vol. II. Wiley, 2004. 634 p. https://doi.org/10.1002/3527603646.
    • 2. Magnetism in medicine. W. Andr, H. Nowak (Eds.). Wiley, 2007. 628 p. https://doi.org/10.1002/9783527610174.
    • 3. Primin M., Nedayvoda I. Algorithms for the analytical solution of the magnetostatics inverse problem for the signal source of the dipole model. Cybernetics and Systems Analysis. 2023. Vol. 59, N 5. P. 821–831. https://doi.org/10.1007/s10559-023-00618-7.
    • 4. Primin M., Nedayvoda I. Inverse problem solution algorithms in magnetocardiography: New analytical approaches and some results. International Journal of Applied Electromagnetics and Mechanics. 2009. Vol. 29, N 2. P. 65–81. https://doi.org/10.3233/JAE-2009-1001.
    • 5. Primin M.A., Nedayvoda I.V. Method and algorithm for obtaining elements of the tensor of spatial derivatives of the magnetic induction vector in the problem of searching for magnetic anomalies. Cybernetics and Systems Analysis. 2019. Vol. 55, N 2. P. 336–346. https://doi.org/10.1007/s10559-019-00139-2.
    • 6. Primin M.A., Nedayvoda I.V. Non-Contact analysis of magnetic fields of biological objects: Algorithms for data recording and processing. Cybernetics and Systems Analysis. 2020. Vol. 56, N 5. P. 848–862. https://doi.org/10.1007/s10559-020-00305-x.
    • 7. Schiffler M., Queitsch M., Stolz R. et al. Calibration of SQUID vector magnetometers in full tensor gradiometry systems. Geophysical Journal International. 2014. Vol. 198, N 2. P. 954–964. https://doi.org/10.1093/gji/ggu173.
    • 8. Keenan S.T., Clark D., Blay K.R., Leslie K., Foley C.P., Billings S. Calibration and testing of a HTS tensor gradiometer for underwater UXO detection. International Conference on Applied Superconductivity and Electromagnetic Devices. ASEMD 2011. (14–16 December 2022, Sydney, NSW, Australia). 2011. P. 135–137. https://doi.org/10.1109/ASEMD.2011.6145086.
    • 9. Pang H., Luo S., Zhang Q., et al. Calibration of a fluxgate magnetometer array and its application in magnetic object localization. Measurement Science and Technology. 2013. Vol. 24, N 7. P. 1–8. https://doi.org/10.1088/0957-0233/24/7/075102.
    • 10. Wang C., Qu X., Zhang X., Zhu W., Fang G. A fast calibration method for magnetometer array and the application of ferromagnetic target localization. IEEE Transactions on Instrumentation and Measurement. 2017. Vol. 66, N 7. P. 1743–1750. https://doi.org/10.1109/TIM.2017.2668558.
    • 11. Bracken R., Smith D., Brown P. Calibrating a tensor magnetic gradiometer using spin data. Scientific Investigations Report 2005-5045. U.S. Geological Survey, Reston, Virginia. 2005. P. 1–5. URL: http://pubs.usgs.gov/sir/2005/5045/.



© 2026 Kibernetika.org. All rights reserved.