Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
KIBERNETYKA TA SYSTEMNYI ANALIZ
International Theoretical Science Journal
-->

DOI 10.34229/KCA2522-9664.26.1.16
UDC 53.088.3+53.088.7

Yu.K. Taranenko
“Likopak” Private Enterprise, Dnipro, Ukraine,
tatanen@ukr.net

O.Yu. Oliinyk
Dnipro Applied College of Radio Electronics, Dnipro, Ukraine,
oleinik_o@ukr.net

V.V. Lopatin
N.S. Polyakov Institute of Geotechnical Mechanics, NAS of Ukraine, Dnipro, Ukraine,
vlop@ukr.net


USING THE LQR CONTROLLER TO OPTIMIZE UAV CONTROL SYSTEMS

Abstract. The existing methods of optimizing the control of unmanned aerial vehicles (UAVs) are considered, which requires the development of more complex control algorithms to increase the performance of rotorcraft UAVs. Using the Python programming language, a dynamic optimization of the UAV control system in the state space is carried out. The integral criteria of the minimum energy consumption for control and the maximum speed, which are given by the corresponding functionals, are used. Using Python, namely the extended scipy library, the Riccati equation is solved using matrix operations and the eigenvalues of the closed-loop control system are obtained. Using the available scipy tools, the main function lqr(A,B,Q,R) of the controller is synthesized. An extended study is conducted that confirms the operability of the developed function.

Keywords: UAVs, quality criteria, modular, symmetric and compromise optima, state space, quadratic forms, LQR controller.


full text

REFERENCES

    • 1. Yazdani D., Cheng R., Yazdani D. et al. A survey of evolutionary continuous dynamic optimization over two decades. Part B. IEEE Transactions on Evolutionary Computation. 2021. Vol. 25, N 4. P. 630–650.
    • 2. Teo K.L., Li B., Yu C., Rehbock V. Applied and computational optimal control. A Control parametrization approach. Springer Cham, 2021. XV, 574. https://doi.org/10.1007/978-3-030-69913-0.
    • 3. Gargiani M., Martinelli A., Martinez M.R., Lygeros J. Parallel and flexible dynamic programming via the mini-batch bellman operator. IEEE Transactions on Automatic Control. 2023. Vol. 69, N 1. P. 455–462. https://doi.org/10.3929/ethz-b-000616836.
    • 4. Manaa Z.M., Abdallah A.M., Abido M.A., Azhar Ali S.S. Koopman-LQR Controller for Quadrotor UAVs from Data. IEEE International Conference on Smart Mobility (SM). (16–18 September, 2024, Niagara Falls, ON, Canada). 2024. P. 153–158. https://doi.org/10.1109/SM63044.2024.10733422.
    • 5. Khosravi M., Azarinfar H., Sabzevari К. Design of infinite horizon LQR controller for discrete delay systems in satellite orbit control: A predictive controller and reduction method approach. Heliyon. 2024. Vol. 10, N 2. Article number e24265. https://doi.org/10.1016/j.heliyon.2024.e24265.
    • 6. Chacko S.J., Kumar R., Abraham R.J. LQR controller performance via particle swarm optimization and neural networks. Optimal Control Applications and Methods. 2024. Vol. 45, N 6. P. 2748–2761. https://doi.org/10.1002/oca.3183.
    • 7. Fujimori T. FRIDAY: Real-time Learning DNN-based Stable LQR controller for Nonlinear Systems under Uncertain Disturbances. arXiv preprint arXiv:2412.01103. 2024. https://doi.org/10.48550/arXiv.2412.01103.
    • 8. Sahoo S.R., Manivannan P.V. Hybrid high-level controller (H2LC) using LQR and MRAC for enhanced quadcopter trajectory tracking performance. Journal of Control and Decision. 2025. P. 1–22. https://doi.org/10.1080/23307706.2025.2469887.
    • 9. Fernandes G., Conceicao A.G., De Arajo H.X. Control of an underactuated quadrotor using LQR and visual markers. IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). IEEE. 2025. P. 58–63. https://doi.org/10.1109/ICARSC65809.2025.10970126.
    • 10. Oliynyk O., Taranenko Y., Losikhin D., Shvachka A. Examining the Kalman filter in the field of noise and interference with the non-Gaussian distribution. Eastern-European Journal of Enterprise Technologies. 2018. Vol. 4, N 4(94). P. 36–42. https://doi.org/10.15587/1729-4061.2018.140649.
    • 11. Khan A.A., Kurokawa S., Do Т.D, Ali Md H. Development of an LQR-based control algorithm for quadcopter. IEEE 12th Conference on Systems, Process & Control (ICSPC). (7 Dec. 2024, Malacca, Malaysia). 2024. P. 142–147. https://doi.org/10.1109/ICSPC63060.2024.10862615.
    • 12. Skorokhod O.M., Goryashin A.S. A wiki of Python movie possibilities for robots with large volumes of data. Applied information technologies. 2023. P. 238–239.
    • 13. Doroshenko A.Yu., Pogoriliy S.D., Dorogiy Ya.Yu., Glushko E.V. Programming numerical methods using Python. (Anisimov A.V. (ed.)). Kiev: Publishing and Printing Center "Kiev University", 2013. 463 p..



© 2026 Kibernetika.org. All rights reserved.