Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
UDC 519.6:551.511.6
V.A. Prusov1, A.Yu. Doroshenko2, T.A. Sologub3


1 Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

vitaliy@softick.com

2 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute,” Kyiv, Ukraine, and Institute of Software Systems of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

doroshenkoanatoliy2@gmail.com

3 Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

sologub@uhmi.org.ua

ATMOSPHERIC PROCESSES IN ELEMENTS OF URBAN CONSTRUCTION

Abstract. The authors demonstrate the efficiency and accuracy of the developed hydrodynamic model of the atmosphere, turbulent closure model, methods for approximating the first- and second-order derivatives on an irregular grid, and the absolutely stable difference scheme based on the solution of applied problems. The results of mathematical modeling of aerodynamics of street canyons are compared with available theoretical and experimental data. The influence of the length of the street canyon and height of the houses on the characteristics of air flow in the urban development is investigated. It is shown that changes in the configuration of urban development lead not only to quantitative but also to a significant qualitative change in air flow pattern and velocity.

Keywords: hydrodynamic mesoscale model of the atmosphere, difference scheme, closure of turbulence model, wind velocity, velocity rotor, rectangular channel, street canyon, urban development.



FULL TEXT

REFERENCES

  1. Prusov V., Doroshenko A. Computational techniques for modeling atmospheric processes. Hershey: IGI Global USA, 2018. 460 p.

  2. Prusov V.A., Romanyuk A.P. Mathematical model of turbulence for stratified media. Scientific works of UkrNDGMI. 1998. Iss. 246. P. 35–45.

  3. Reynolds O. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil. Trans. Roy. Soc. 1895. Vol. 174. P. 935–982.

  4. Byzova I.L., Ivanov V.N., Garger E.K. Turbulence in the atmospheric boundary layer. Leningrad: Gidrometeoizdat, 1989. 263 p.

  5. Methods for calculating turbulent flows. Ed. V. Kollman. Moscow: Mir, 1984. 464 с.

  6. Turbulence. Principles and applications (Russian translation). Ed. W. Frost, T. Molden. Moscow: Mir, 1980. 535 p.

  7. Galperin B., Kantha L., Hassid S., Rosati A. A quasi-equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci. 1988. Vol. 45. P. 55–62.

  8. Boussinesq J. Theorie de l’ecoulement tourbillant. Mem. Pres. Acad. Sci. 1877. XXIII. 46 p.

  9. Kolmogorov A. Local structure of turbulence in an incompressible fluid at very large Reynolds numbers. DAN USSR. 1941. Т. 39. P. 299–303.

  10. Rotta J. Statistische Theorie nichthomogener Turbulenz. 1. Zeitscrift fr Physik. 1951. Bd 129. S. 129–142.

  11. Prandtl L. Uber die ausgebildete Turbulenz. ZAMM. 1925. Vol. 5. P. 136–139.

  12. von Karman Th. Mechanische Ahnlichkeit und Turbulenz. Nachr. Ges. Wiss. Gottingen, Math. Phys. Klasse. 1930. Vol. 58. P. 337–346.

  13. Thom A.S. Momentum, mass and heat exchange of plant communities. Vegetation and the atmosphere. Monteith J.L. (ed.). Vol. 1. Principles. London: Academic Press, 1975. P. 57–109.

  14. Prusov V., Doroshenko A., Farago I., Havasi A. On the numerical solution of the three-dimensional advection-diffusion equation. Problemy prohramuvannya. 2006. № 2–3. P. 641–647.

  15. Prusov V.A., Doroshenko A.E., Chernysh R.I., Guk L.N. Effective difference scheme for the numerical solution of the convective diffusion problem. Kibernetika i sistemnyj analiz. 2007. № 3. P. 64–74.

  16. Nikuradse J. Gesetzmssigkeit der turbulenten Strmung in glatten Rohren. Forschg. Arb. Ing.-Wes., Ausgabe. 1932. N 356.

  17. Nikuradse I. Stroemungsgesetze in rauhen Rohren. Forschungs-Heft (Forschungs auf dem Gebiete des Ingenieur-wesens). 1933. N 361. Р. 1–22.

  18. Coles D. The law of the wake in the turbulent boundary layer. Journal of Fluid Mechanics. 1956. N 1. 191 p.

  19. Kline S.J., Runstadler P.W. Some preliminary results of visual studies of the flow model of the wall layers of the turbulent boundary layer. ASME Transactions. Series E. 1959. Vol. 26, N 2. P. 166–170.

  20. Schlichting G. Theory of the boundary layer. Moscow: Nauka, 1969. 742 p.

  21. Brundrett E., Baines W.D. The production and diffusion of vorticity in duct flow. J. Fluid Mech. 1964. Vol. 19. P. 375–394.

  22. Kornilov V.I. Spatial near-wall turbulent flows in angular configurations. Novosibirsk: Nauka, 2000. 398 p.

  23. Gessner F.B., Jones J.B. On some aspects of fully developed turbulent flow in rectangular channels. J. Fluid Mech. 1965. Vol. 23. P. 689–713.

  24. Brundrett E., Baines W.D. The production and diffusion of vorticity in duct flow. J. Fluid Mech. 1964. Vol. 19. P. 375–394.

  25. Melling A., Whitelaw J.H. Turbulent flow in a rectangular duct. J. Fluid Mech. 1976. Vol. 78, N 2. P. 289–315.

  26. Tepaks L.A. Uniform turbulent motion in pipes and channels. Tallinn: Valgus, 1975. 255 p.

  27. Han I.S. Hydrodynamic entrance length for incompressible flow in rectangular ducts. Trans. ASME, J. Applied Mechanics. 1960. Vol. 27, N 3. P. 403–408.

  28. Chan T.L., Dong G., Leung C.W., Cheung C.S., Hung W.T. Validation of a two-dimensional pollutant dispersion model in an isolated street canyon. Atmospheric Environment. 2002. Vol. 36, N 5. P. 861–872.

  29. Mestayer P.G., Sini J.-F., Jobert M. Simulation of the wall temperature influence on flows and dispersion within street canyons. Proc. 3rd International Conference on Air Pollution (Porto Carras). 1995. Vol. 1. P.106–109.

  30. Xie X., Huang Z., Wang J., Xie Z. The impact of solar radiation and street layout on pollutant dispersion in street canyon. Building and Environment. 2005. V. 40. P. 201–212.

© 2019 Kibernetika.org. All rights reserved.