Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
UDC 517.988
S.V. Denisov1, V.V. Semenov2, P.I. Stetsyuk3


1 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

sireukr@gmail.com

2 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

semenov.volodya@gmail.com

3 V.M. Glushkov Institute of Cybernetics of the National Academy
of Sciences of Ukraine, Kyiv, Ukraine

stetsyukp@gmail.com

BREGMAN EXTRAGRADIENT METHOD WITH MONOTONE
RULE OF STEP SIZE TUNING

Abstract. A new extragradient-type method for the approximate solution of variational inequalities with pseudo-monotone and Lipschitz-continuous operators acting in a finite-dimensional linear normed space is proposed. The method uses the Bregman divergence (distance) instead of the Euclidean distance and the new adjustment of the step size which does not require knowledge of the Lipschitz constant of operator. In contrast to the previously used rules for choosing the step size, the proposed method does not perform additional calculations for the operator values and prox-map. A theorem on the convergence of the method is proved.

Keywords: variational inequality, pseudo-monotonicity, Lipschitz condition, extragradient method, Bregman divergence, convergence.



FULL TEXT

REFERENCES

  1. Bayokki K., Capello A. Variational and quasi-variational inequalities. Moscow: Nauka, 1988. 448 p.

  2. Nagurney A. Network economics: A variational inequality approach. Dordrecht: Kluwer Academic Publishers, 1999. 325 p.

  3. Tseng P. A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 2000. Vol. 38. P. 431–446.

  4. Facchinei F., Pang J.-S. Finite-dimensional variational inequalities and complementarily problem. Vol. 2. New York: Springer, 2003. 666 p.

  5. Stetsyuk P.I., Fesiuk O.V., Khomyak O.N. The generalized ellipsoid method. Cybernetics and Systems Analysis. 2018. Vol. 54, N 4. P. 576–584.

  6. Nesterov Yu. Dual extrapolation and its applications to solving variational inequalities and related problems. Mathematical Programming. 2007. Vol. 109, Iss. 2–3. P. 319–344.

  7. Nurminsky E.A. The use of additional small effects in the Fejer models of iterative algorithms. Zhurn. Vychisl. Mat. i Mat. Fiz. 2008. Vol. 48, No. 12. P. 2121–2128.

  8. Semenov V.V. On the parallel proximal decomposition method for solving the problems of convex optimization. Journal of Automation and Information Sciences. 2010. Vol. 42, Iss. 4. P. 13–18.

  9. Semenov V.V. A Strongly convergent splitting method for systems of operator inclusions with monotone operators. Journal of Automation and Information Sciences. 2014. Vol. 46, Iss. 5. P. 45–56.

  10. Semenov V.V. Hybrid splitting methods for the system of operator inclusions with monotone operators. Cybernetics and Systems Analysis. 2014. Vol. 50, N 5. P. 741–749.

  11. Yang J., Liu H.W. Strong convergence result for solving monotone variational inequalities in Hilbert space. Numerical Algorithms. 2018. DOI: https://doi.org/10.1007/s11075-018-0504-4.

  12. Gidel G., Berard H., Vincent P., Lacoste-Julien S. A Variational inequality perspective on generative adversarial networks. arXiv preprint arXiv:1802.10551. 2018.

  13. Korpelevich G.M. Extragradient method for finding saddle points and other problems. Ekonomika i matematicheskiye metody. 1976. Vol. 12, No. 4. P. 747–756.

  14. Khobotov E.N. On the modification of the extragradient method for solving variational inequalities and some optimization problems. Zhurn. Vychisl. Mat. i Mat. Fiz. 1987. Vol. 27, No. 10. P. 1462–1473.

  15. Semenov V.V. Strongly convergent algorithms for variational inequality problem over the set of solutions the equilibrium problems. In: Continuous and Distributed Systems. Solid Mechanics and Its Applications. Zgurovsky M.Z., Sadovnichiy V.A. (Eds.). Springer International Publishing, 2014. Vol. 211. P. 131–146.

  16. Denisov S.V., Semenov V.V., Chabak L.M. Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators. Cybernetics and Systems Analysis. 2015. Vol. 51, N 5. P. 757–765.

  17. Verlan D.A., Semenov V.V., Chabak L.M. A Strongly convergent modified extragradient method for variational inequalities with non-Lipschitz operators. Journal of Automation and Information Sciences. 2015. Vol. 47, Iss. 7. P. 31–46.

  18. Nemirovski A. Prox-method with rate of convergence O(1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM Journal on Optimization. 2004. Vol. 15. P. 229–251.

  19. Semenov V.V. Modified extragradient method with bregman divergence for variational inequalities. Journal of Automation and Information Sciences. 2018. Vol. 50, Iss. 8. P. 26–37.

  20. Semenov V.V. A Version of the mirror descent method to solve variational inequalities. Cybernetics and Systems Analysis. 2017. Vol. 53, N 2. P. 234–243.

  21. Chabak L., Semenov V., Vedel Y. A new non-Euclidean proximal method for equilibrium problems. In: Recent Developments in Data Science and Intelligent Analysis of Information: Proc. XVIII ICDSIAI 2018. Advances in Intelligent Systems and Computing. Chertov O., Mylovanov T., Kondratenko Y., Kacprzyk J., Kreinovich V., Stefanuk V. (Eds.) Cham: Springer, 2019. Vol. 836. P. 50–58.

  22. Номировский Д.А., Рублев Б.В., Семёнов В.В. Сходимость двухэтапного метода с расхождением Брэгмана для вариационных неравенств. Кибернетика и системный анализ. 2019. Т. 55, № 3. С. 17–27.

  23. Lyashko S.I., Semenov V.V. A new two-step proximal algorithm of solving the problem of equilibrium programming. In: Optimization and Its Applications in Control and Data Sciences. Springer Optimization and Its Applications. Goldengorin B. (Ed.). Cham: Springer, 2016. Vol. 115. P. 315–325.

  24. Beck A. First-order methods in optimization. Philadelphia: Society for Industrial and Applied Mathematics, 2017. 479 p.
© 2019 Kibernetika.org. All rights reserved.