Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
UDC 681.5+513.6+517.9
V.P. Kharchenko1, N.M. Glazunov2


1 National Aviation University, Kyiv, Ukraine

kharch@nau.edu.ua

2 National Aviation University, Kyiv, Ukraine

glanm@yahoo.com

FORMAL AND NONARCHIMEDIAN STRUCTURES OF DYNAMIC SYSTEMS
ON MANIFOLDS

Abstract. New results are presented and a brief review of new methods and results of the theory of dynamic systems on manifolds over local fields and formal groups over local rings is given. For the analysis of n-dimensional manifolds and their dynamics, dynamic systems on such manifolds, formal structures are used, in particular, n-dimensional formal groups. Infinitesimal deformations are presented in terms of formal groups. The well-known one-dimensional case extends, and n-dimensional (n ≥1) analytic mappings of an open p-adic polydisc (n-disk) Dpn are considered. We introduce and investigate the n-dimensional analogs of modules arising in formal and non-Archimedean dynamic structures. Attention is drawn to rigid structures, objects and methods. From the point of view of system analysis, new, namely, formal and non-Archimedean, faces and structures of systems, maps and iterations of mappings between these faces and structures are introduced and investigated.

Keywords: formal group, local ring, commutative formal group scheme, deformation, formal module, dynamic system, module of differentials.



FULL TEXT

REFERENCES

  1. Krivonos Yu.G., Kharchenko V.P., Glazunov N.M. Differential-algebraic equations and dynamical systems on manifolds. Kibernetika i sistemnyj analiz. 2016. Vol. 52, No. 3. P. 83–96.

  2. Zerz E. Algebraic systems theory. Aachen: Lehrstuhl D fur Mathematik RWTH, 2006. 104 p.

  3. Hannan E.J., Deistler M. The statistical theory of linear systems. Philadelphia: SIAM Publ., 2012. 390 p.

  4. Wood, J. Modules and behaviours in nD systems theory. Multidimensional Systems and Signal Processing. 2000. Vol. 11, Iss. 1–2. P. 11–48.

  5. Arbib MA, Mains E., Brockett R., Lobri K., Burns K.I., Hart N.E., Ossetian N.I. Mathematical methods in systems theory (Russian translation). Moscow: Mir, 1979. 328 p.

  6. Systems Theory. Mathematical methods and modeling (in Russian). Moscow: Mir, 1989. 382 p.

  7. Glushkov V.M. Automata theory and formal firmware transformations. Kibernetika. 1965. No. 5. P. 1–10.

  8. Glushkov V.M. Introduction to ACS (in Russian). Kiev: Technika, 1974. 320 p.

  9. Glazunov M.M. On the "normal subgroup" of one-dimensional formal groups defined over a ring of entire local fields. Dop. Akad. Nauk URSR. Ser. А. 1973. No. 11. P. 965–968.

  10. Lubin J. Non-archimedean dynamical systems. Compos. Math. 1994. Vol. 94. P. 321–346.

  11. Hua-Chien Li. p-adic dynamical systems and formal groups. Compos. Math. 1996. Vol. 104. P. 41–54.

  12. Serre J.P. Lie algebras and Lie groups. Lecture Notes in Mathematics. Vol. 1500. Berlin; Heidelberg: Springer, 1992. 168 p.

  13. Pontryagin L.S. Continuous groups: 3rd ed. Moscow: Nauka, 1986. 519 p.

  14. Hazewinkel M. Formal groups and applications, Providence, Rhode Island: AMS Chelsea Publishing, 2012. 573 p.

  15. Mumford D. Abelian varieties. Tata Institute of fundamental research publications, Vol. 13, 2012. 263 p.

  16. Schwede S. Equivariant properties of symmetric products. J. Amer. Math. Soc. 2017. Vol. 30, N 3. P. 673–711.

  17. Schwede S. Formal groups and stable homotopy of commutative rings. Geometry & Topology. 2004. Vol. 8. P. 335–412.

  18. Snaith V. Stable homotopy around the Arf-Kervaire invariant. Basel; Boston; Berlin: Birkhauser, 2009. 240 p.

  19. Faltings G. p–adic hodge theory. J. Amer. Math. Soc. 1988. Vol. 1, N 1. P. 255–288.

  20. Kisin M. Crystalline representations and F-crystals. In: Algebraic Geometry and Number Theory. Progress in Mathematics. Ginzburg V. (ed.). Boston: Birkhuser, 2006. Vol. 253. P. 459–496.

  21. Glazunov N.M. Extremal forms and rigidity in arithmetic geometry and in dynamics. Chebyshevskii Sbornik. 2015. Vol. XVI, Iss. 3(55). P. 124–146.

  22. Glazunov N.M. On norm maps and “universal norms” of formal groups over integer rings of local fields. Continuous and Distributed Systems. Theory and Applications. Berlin; Heidelberg: Springer, 2014. P. 73–80.

  23. Khrennikov A.Yu., Nilsson M. p-adic deterministic and random dynamics. Dordrecht: Kluwer Academic Publ, 2004. 280 p.

  24. Vladimirov V.S., Volovich I.V., Zelenov E.I. p-adic analysis and mathematical physics. Series on Soviet and East European Mathematics. N.Y.: World Scientific Co., Inc. 1994. Vol. 1. 340 p.

  25. Woodcock C.F., Smart N.P. p-adic chaos and random number generation. Experiment Math. 1998. P. 333–342.

  26. Thiran E., Verstegen D., Weyers J. p-adic dynamics. J. Stat. Phys. 1989. Vol. 54. P. 893–913.

  27. Ben-Menahem S. p-adic iterations. Preprint, TAUP 1627–88, Tel Aviv University, 1988. 43 p.

  28. Gromov M. Soft and hard symplectic geometry. Proc. of the International Congress of Mathematicians Berkeley. California, USA, 1986. P. 81–98.

  29. Postnikov A.G. Selected Works. Moscow: Fizmatlit, 2005. 512 p.

  30. Rigidity (mathematics). URL: https://en.wikipedia.org/wiki/Rigidity_(mathematics).

  31. Serre J.P. Corps locaux. Paris: Hermann. 2004. 246 p.

  32. Field M., Jarden M. Field arithmetic. Third ed. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, Vol. 11, Berlin: Springer-Verlag, 2008. 792 p.

  33. Shafarevich I.R. Mathematical works. V. 3, Part 1. Moscow: Prima B., 1996. 415 p.
© 2019 Kibernetika.org. All rights reserved.