Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
UDC 519.11.176
N.K. Timofieva1


1 International Scientific and Training Center of Information Technologies and Systems, National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, Kyiv, Ukraine

TymNad@gmail.com

ON THE FRACTAL NATURE OF COMBINATORIAL SETS AND
FINDING OF FORMULAS FOR COMBINATORIAL NUMBERS

Abstract. The fractal structure of combinatorial sets, which is formed in ordering of combinatorial configurations, is considered. Using the fractal properties of contracted sets, an approach to solving enumeration problems in combinatorics is developed. Arithmetic sequences are used to find combinatorial numbers.

Keywords: combinatorics, fractals, combinatorial configurations, partitioning of a natural number, arithmetic triangle, combinatorial numbers.



FULL TEXT

REFERENCES

  1. Turbin A.F., Pracevity N.V. Fractal sets, functions, distributions [in Russian]. Kiev: Nauk. dumka, 1992. 207 p.

  2. Savchenko I.O. Fractal analysis of sets of incomplete sums of numbers: abstract. diss. … Cand. Phys. Sciences. Kiev, 2016. 20 p.

  3. Kronover R.M. Fractals and chaos in dynamic systems. Fundamentals of theory [Russian translation]. Moscow: Postmarket, 2000. 352 p.

  4. Mandelbrot B. Fractal geometry of nature [in Russian]. Izhevsk: IKI, 2010. 656 p.

  5. Stanley R. Enumerative Combinatorics [Russian translation]. Moscow: Mir, 1990. 440 p.

  6. Rybnikov K.A. Introduction to combinatorial analysis [in Russian]. Moscow: Izd-vo Moskov. un-ta, 1985. 308 p.

  7. Hall M.H. Combinatorics [Russian translation]. Moscow: Mir, 1970. 424 p.

  8. Gulden J., Jackson D. Enumerative combinatorics [Russian translation]. Moscow: Nauka, 1990. 503 p.

  9. Timofieva N.K. Numerical methods for solving combinatorial optimization problems: diss. … Dr. Tech. Sciences. Kyiv. Kyiv, 2007. 374 p.

  10. Timofieva N.K. On the fractal structure of sign combinatorial spaces. Mathematical and Computer Modeling. Series: Physical and Mathematical Sciences. 2017. Iss. 15. P. 236–242.

  11. Depman I.Ya. History of arithmetic [in Russian]. Moscow: Gosud. uchebno-pedagogich. izd-vo Minist. prosveshch. RSFSR, 1959. 423 p.
© 2020 Kibernetika.org. All rights reserved.