Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
UDC 517.9:519.6
V.M. Bulavatsky1, V.O. Bohaienko2


1 V.M. Glushkov Institute of Cybernetics, National Academy
of Sciences of Ukraine, Kyiv, Ukraine

v_bulav@ukr.net

2 V.M. Glushkov Institute of Cybernetics, National Academy
of Sciences of Ukraine, Kyiv, Ukraine

sevab@ukr.net

SOME CONSOLIDATION DYNAMICS PROBLEMS WITHIN THE FRAMEWORK
OF THE BIPARABOLIC MATHEMATICAL MODEL
AND ITS FRACTIONAL-DIFFERENTIAL ANALOG

Abstract. The paper deals with mathematical modeling of dynamic processes of filtration consolidation in saturated geoporous media within the framework of non-classical mathematical models based on biparabolic evolution equation and its fractional-differential analog. We state and obtain regularized solutions of inverse retrospective problems of consolidation theory according to the above-mentioned models; obtain the convergence estimates for the found regularized solutions; and present the results of numerical experiments.

Keywords: mathematical modeling, non-classical models, filtration-consolidation processes, dynamics, inverse problems, biparabolic evolution equation, fractional-differential analog.



FULL TEXT

REFERENCES

  1. Shirinkulov T.Sh., Zaretsky Yu.K. Creep and soil consolidation [in Russian]. Tashkent: Fan, 1986. 390 p.

  2. Lykov A.V. Heat and mass transfer [in Russian]. Moscow: Energy, 1978. 479 p.

  3. Cattaneo G. Sur une forme de l’equation de la chaleur Бleminat le paradoxe d’une propagation . Compte Rendus. 1958. Vol. 247, N 4. P. 431–433.

  4. Florin V.A. Fundamentals of soil mechanics [in Russian]. Vol. 2.Moscow: Gosstroyizdat, 1961. 544 p.

  5. Ivanov P.L. Soils and foundations of hydraulic structures [in Russian]. Moscow: Vyssh. shk., 1991. 447 p.

  6. Fushich V.I. On symmetry and particular solutions of some multidimensional equations of mathematical physics. Theoretical and algebraic methods in problems of mathematical physics [in Russian]. Kiev: Institute of Mathematics of the Academy of Sciences of the Ukrainian SSR, 1983. P. 4–22.

  7. Fushchich V.I., Galitsyn A.S., Polubinsky A.S. On a new mathematical model of heat-conduction processes. Ukr. mat. journal. 1990. Vol. 42, N 2. P. 237–245.

  8. Bulavatsky V.M. Biparabolic mathematical model of filtration-consolidation process. Dop. NAS of Ukraine. 1997. N 8. P. 13–17.

  9. Skopetsky V.V., Bulavatsky V.M. Mathematical modeling of filtration soil consolidation under conditions of salt solutions movement based on a biparabolic model. Problemy upravleniya i informatiki. 2003. N 4. P. 134–139.

  10. Bulavatsky V.M., Krivonos Yu.G., Skopetsky V.V. Non-classical mathematical models of heat and mass transfer processes [in Ukrainian]. Kyiv: Nauk. dumka, 2005. 283 p.

  11. Tikhonov A.N., Arsenin V.Ya. Methods for solving ill-posed problems [in Russian]. Moscow: Nauka, 1979. 288 p.

  12. Kirsch A. An introduction to the mathematical theory of inverse problem. New York: Springer-Verlag, 1996. 307 p.

  13. Wei T., Wang J.-G. A modified quasi-boundary value method for the backward time-fractional diffusion problem. ESAIM: Mathematical modelling and numerical analysis. 2014. Vol. 48, N 2. P. 603–621.

  14. Sakamoto K., Yamamoto M. Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. Journal of Mathematical Analysis and Applications. 2011. Vol. 382, Iss. 1. P. 426–447.

  15. Kirillov A.A., Gvishiani A.D. Theorems and problems of functional analysis [in Russian]. Moscow: Nauka, 1979. 384 p.

  16. Uchaikin V.V. Fractional derivatives method [in Russian]. Ulyanovsk: Artichoke, 2008. 512 p.

  17. Mainardi F. Fractional calculus and waves in linear viscoelasticity. London: Imperial College Press, 2010. 368 p.

  18. Podlubny I. Fractional differential equations. New York: Academic Press, 1999. 341 p.

  19. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and applications of fractional differential equations. Amsterdam: Elsevier, 2006. 523 p.

  20. Meilanov M.M., Shibanova M.R. Features of the solution of the heat transfer equation in fractional derivatives. Journal of Technical Physics. 2011. Vol. 81, N 7. P. 1–6.

  21. Bulavatsky V.M., Krivonos Yu.G. Mathematical modelling in the geoinformation problem of the dynamics of geomigration under space-time nonlocality. Cybernetics and Systems Analysis. 2012. Vol. 48, N 4. P. 539–546.

  22. Bulavatsky V.M. One generalization of the fractional differential geoinformation model of research of locally-nonequilibrium geomigration processes. Journal of Automation and Information Science. 2013. Vol. 45, N 1. P. 59–69.

  23. Bulavatsky V.M. Fractional differential analog of biparabolic evolution equation and some its applications. Cybernetics and Systems Analysis. 2016. Vol. 52, N 5. P. 737–747.

  24. Gorenflo R., Kilbas A.A., Mainardi F., Rogosin S.V. Mittag-Leffler functions, related topics and applications. Berlin: Springer-Verlag, 2014. 454 p.

  25. Podlubny I. Mittag-Leffler function. 2020. URL: https://www.mathworks.com/matlabcentral/ fileexchange/8738-mittag-leffler-function.
© 2020 Kibernetika.org. All rights reserved.