Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
UDC 517.988
Ya.I. Vedel1, G.V. Sandrakov2, V.V. Semenov3, L.M. Chabak4


1 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

yana.vedel@gmail.com

2 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

sandrako@mail.ru

3 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

semenov.volodya@gmail.com

4 State University of Infrastructure and Technology, Kyiv, Ukraine

chabaklm@ukr.net

CONVERGENCE OF A TWO-STAGE PROXIMAL ALGORITHM
FOR EQUILIBRIUM PROBLEMS IN HADAMARD SPACES

Abstract. An iterative two-stage proximal algorithm for the approximate solution of equilibrium problems in Hadamard spaces is proposed. This algorithm is an analog of the previously studied two-stage algorithm for equilibrium problems in Hilbert space. For Lipschitz-type pseudo-monotone bifunctions, a theorem on the weak convergence of sequences generated by the algorithm is proved.

Keywords: Hadamard space, equilibrium problem, pseudo-monotonicity, two-stage algorithm, convergence.



FULL TEXT

REFERENCES

  1. Antipin A.S. Equilibrium programming: Proximal methods. Comput. Math. Math. Phys. 1997. Vol. 37. P. 1285–1296. https://doi.org/10.1134/S0965542507120044.

  2. Mastroeni G. On auxiliary principle for equilibrium problems. In: Daniele P. et al. (eds.). Equilibrium Problems and Variational Models. Dordrecht: Kluwer Academic Publishers, 2003. P. 289–298. https://doi.org/10.1007/978-1-4613-0239-1.

  3. Combettes P.L., Hirstoaga S.A. Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 2005. Vol. 6. P. 117–136.

  4. Quoc T.D., Muu L.D., Hien N.V. Extragradient algorithms extended to equilibrium problems. Optimization. 2008. Vol. 57. P. 749–776. https://doi.org/10.1080/02331930601122876.

  5. Semenov V.V. On the parallel proximal decomposition method for solving the problems of convex optimization. J. of Automation and Information Sciences. 2010. Vol. 42, Iss. 4. P. 13–18. https://doi.org/10.1615/JAutomatInfScien.v42.i4.20.

  6. Lyashko S.I., Semenov V.V., Voitova T.A. Low-cost modification of Korpelevich’s methods for monotone equilibrium problems. Cybernetics and Systems Analysis. 2011. Vol. 47, N 4. P. 631–639. https://doi.org/10.1007/s10559-011-9343-1.

  7. Semenov V.V. Strongly convergent algorithms for variational inequality problem over the set of solutions the equilibrium problems. In: Zgurovsky M.Z. and Sadovnichiy V.A. (eds.) Continuous and Distributed Systems. Solid Mechanics and Its Applications. Vol. 211. Switzerland: Springer International Publishing, 2014. P. 131–146. https://doi.org/10.1007/978-3-319-03146-0_10.

  8. Colao V., Lopez G., Marino G., Martin-Marquez V. Equilibrium problems in Hadamard manifolds. J. of Mathematical Analysis and Applications. 2012. Vol. 388. P. 61–77. https://doi.org/ 10.1016/j.jmaa.2011.11.001.

  9. Lyashko S.I., Semenov V.V. A new two-step proximal algorithm of solving the problem of equilibrium programming. In: Goldengorin B. (ed.). Optimization and its applications in control and data sciences. Springer Optimization and Its Applications. Vol. 115. Cham: Springer, 2016. P. 315–325. https://doi.org/10.1007/978-3-319-42056-1_10.

  10. Chabak L., Semenov V., Vedel Y. A new non-Euclidean proximal method for equilibrium problems. In: Chertov O., Mylovanov T., Kondratenko Y., Kacprzyk J., Kreinovich V., Stefanuk V. (eds.). Recent developments in data science and intelligent analysis of information. ICDSIAI 2018. Advances in Intelligent Systems and Computing. Vol. 836. Cham: Springer, 2019. P. 50–58. https://doi.org/10.1007/978-3-319-97885-7_6.

  11. Khatibzadeh H., Mohebbi V. Monotone and pseudo-monotone equilibrium problems in Hadamard spaces. J. of the Australian Mathematical Society. 2019. P. 1–23. https://doi.org/10.1017/ S1446788719000041.

  12. Khatibzadeh H., Mohebbi V. Approximating solutions of equilibrium problems in Hadamard spaces. Miskolc Mathematical Notes. 2019. Vol. 20, N 1. P. 281–297. https://doi.org/10.18514/MMN. 2019.2361.

  13. Kinderlehrer D. Stampacchia G. An introduction to variational inequalities and their applications. New York: Academic Press, 1980. Russian transl. Moscow: Mir, 1983. 256 p.

  14. Sandrakov G.V. Homogenization of variational inequalities for problems with regular obstacles. Doklady Akademii Nauk. 2004. Vol. 397, Iss. 2. P. 170–173.

  15. Sandrakov G.V. Homogenization of variational inequalities for non-linear diffusion problems in perforated domains. Izvestiya Mathematics. 2005. Vol. 69, Iss. 5. P. 1035–1059. http://dx.doi.org/ 10.1070/IM2005v069n05ABEH002287.

  16. Korpelevich G.M. An extragradient method for finding saddle points and for other problems. Matecon. 1976. Vol. 12, N 4. P. 747–756.

  17. Semenov V.V. A strongly convergent splitting method for systems of operator inclusions with monotone operators. J. of Automation and Information Sciences. 2014. Vol. 46, Iss. 5. P. 45–56. https://doi.org/10.1615/JAutomatInfScien.v46.i5.40.

  18. Semenov V.V. Hybrid splitting methods for the system of operator inclusions with monotone operators. Cybernetics and Systems Analysis. 2014. Vol. 50, N 5. P. 741–749. https://doi.org/ 10.1007/s10559-014-9664-y.

  19. Denisov S.V., Semenov V.V., Chabak L.M. Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators. Cybernetics and Systems Analysis. 2015. Vol. 51, N 5. P. 757–765. https://doi.org/10.1007/s10559-015-9768-z.

  20. Verlan D.A., Semenov V.V., Chabak L.M. A strongly convergent modified extragradient method for variational inequalities with non-Lipschitz operators. J. of Automation and Information Sciences. 2015. Vol. 47, Iss. 7. P. 31–46. https://doi.org/10.1615/JAutomatInfScien.v47.i7.40.

  21. Semenov V.V. Modified extragradient method with Bregman divergence for variational inequalities. J. of Automation and Information Sciences. 2018. Vol. 50, Iss. 8. P. 26–37. https://doi.org/ 10.1615/JAutomatInfScien.v50.i8.30.

  22. Denisov S.V., Nomirovskii D.A., Rublyov B.V., Semenov V.V. Convergence of extragradient algorithm with monotone step size strategy for variational inequalities and operator equations. J. of Automation and Information Sciences. 2019. Vol. 51, Iss. 6. P. 12–24. https://doi.org/ 10.1615/JAutomatInfScien.v51.i6.20.

  23. Denisov S.V., Semenov V.V., Stetsyuk P.I. Bregman extragradient method with monotone rule of step adjustment. Cybernetics and Systems Analysis. 2019. Vol. 55, N 3. P. 377–383. https://doi.org/ 10.1007/s10559-019-00144-5.

  24. Popov L.D. A modification of the Arrow–Hurwicz method for search of saddle points. Mathematical Notes of the Academy of Sciences of the USSR. 1980. Vol. 28, Iss. 5. P. 845–848. https://doi.org/ 10.1007/BF01141092.

  25. Semenov V.V. A version of the mirror descent method to solve variational inequalities. Cybernetics and Systems Analysis. 2017. Vol. 53, N 2. P. 234–243. https://doi.org/10.1007/s10559-017-9923-9.

  26. Nomirovskii D.A., Rublyov B.V., Semenov V.V. Convergence of two-stage method with Bregman divergence for solving variational inequalities. Cybernetics and Systems Analysis. 2019. Vol. 55, N 3. P. 359–368. https://doi.org/10.1007/s10559-019-00142-7.

  27. Bacak M. Convex analysis and optimization in Hadamard spaces. Berlin; Boston: De Gruyter, 2014. viii+185 p.

  28. Kirk W., Shahzad N. Fixed point theory in distance spaces. Cham: Springer, 2014. xii+173 p. https://doi.org/10.1007/978-3-319-10927-5.

  29. Burago D., Burago Yu., Ivanov S. A course in metric geometry. Graduate Studies in Mathematics. 2001. Vol. 33. Providence: AMS. xiv+415 p.

  30. Burago Yu.D., Zalgaller V.A. Introduction to Riemannian geometry [in Russian]. Moscow: LENAND, 2019. 320 p.

  31. Gidel G., Berard H., Vincent P., Lacoste-Julien S. A variational inequality perspective on generative adversarial networks. arXiv preprint arXiv:1802.10551. 2018.
© 2020 Kibernetika.org. All rights reserved.