Cybernetics And Systems Analysis logo
Информация редакции Аннотации статей Авторы Архив
КИБЕРНЕТИКА И СИСТЕМНЫЙ АНАЛИЗ
Международний научно-теоретический журнал
УДК 517.988
Я.И. Ведель, Г.В. Сандраков, В.В. Семенов, Л.М. Чабак

СХОДИМОСТЬ ДВУХЭТАПНОГО ПРОКСИМАЛЬНОГО АЛГОРИТМА ДЛЯ ЗАДАЧИ
О РАВНОВЕСИИ В ПРОСТРАНСТВАХ АДАМАРА

Аннотация. Рассмотрен итерационный двухэтапный проксимальный алгоритм для приближенного решения задач о равновесии в пространствах Адамара. Данный алгоритм является аналогом ранее изученного двухэтапного алгоритма для задач о равновесии в гильбертовом пространстве. Для псевдомонотонных бифункций липшицевого типа доказана теорема о слабой сходимости порожденных алгоритмом последовательностей.

Ключевые слова: пространство Адамара, задача о равновесии, псевдомонотонность, двухэтапный алгоритм, сходимость.



ПОЛНЫЙ ТЕКСТ

Ведель Яна Игоревна,
аспирантка Киевского национального университета имени Тараса Шевченко,
yana.vedel@gmail.com

Сандраков Геннадий Викторович,
доктор физ.-мат. наук, старший научный сотрудник, ведущий научный сотрудник Киевского национального университета имени Тараса Шевченко, sandrako@mail.ru

Семенов Владимир Викторович,
доктор физ.-мат. наук, профессор, профессор кафедры Киевского национального университета имени Тараса Шевченко, semenov.volodya@gmail.com

Чабак Любовь Михайловна,
кандидат физ.-мат. наук, доцент кафедры Государственного университета инфраструктуры
и технологий, Киев, chabaklm@ukr.net


СПИСОК ЛИТЕРАТУРЫ

  1. Antipin A.S. Equilibrium programming: Proximal methods. Comput. Math. Math. Phys. 1997. Vol. 37. P. 1285–1296. https://doi.org/10.1134/S0965542507120044.

  2. Mastroeni G. On auxiliary principle for equilibrium problems. In: Daniele P. et al. (eds.). Equilibrium Problems and Variational Models. Dordrecht: Kluwer Academic Publishers, 2003. P. 289–298. https://doi.org/10.1007/978-1-4613-0239-1.

  3. Combettes P.L., Hirstoaga S.A. Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 2005. Vol. 6. P. 117–136.

  4. Quoc T.D., Muu L.D., Hien N.V. Extragradient algorithms extended to equilibrium problems. Optimization. 2008. Vol. 57. P. 749–776. https://doi.org/10.1080/02331930601122876.

  5. Semenov V.V. On the parallel proximal decomposition method for solving the problems of convex optimization. J. of Automation and Information Sciences. 2010. Vol. 42, Iss. 4. P. 13–18. https://doi.org/10.1615/JAutomatInfScien.v42.i4.20.

  6. Lyashko S.I., Semenov V.V., Voitova T.A. Low-cost modification of Korpelevich’s methods for monotone equilibrium problems. Cybernetics and Systems Analysis. 2011. Vol. 47, N 4. P. 631–639. https://doi.org/10.1007/s10559-011-9343-1.

  7. Semenov V.V. Strongly convergent algorithms for variational inequality problem over the set of solutions the equilibrium problems. In: Zgurovsky M.Z. and Sadovnichiy V.A. (eds.) Continuous and Distributed Systems. Solid Mechanics and Its Applications. Vol. 211. Switzerland: Springer International Publishing, 2014. P. 131–146. https://doi.org/10.1007/978-3-319-03146-0_10.

  8. Colao V., Lopez G., Marino G., Martin-Marquez V. Equilibrium problems in Hadamard manifolds. J. of Mathematical Analysis and Applications. 2012. Vol. 388. P. 61–77. https://doi.org/ 10.1016/j.jmaa.2011.11.001.

  9. Lyashko S.I., Semenov V.V. A new two-step proximal algorithm of solving the problem of equilibrium programming. In: Goldengorin B. (ed.). Optimization and its applications in control and data sciences. Springer Optimization and Its Applications. Vol. 115. Cham: Springer, 2016. P. 315–325. https://doi.org/10.1007/978-3-319-42056-1_10.

  10. Chabak L., Semenov V., Vedel Y. A new non-Euclidean proximal method for equilibrium problems. In: Chertov O., Mylovanov T., Kondratenko Y., Kacprzyk J., Kreinovich V., Stefanuk V. (eds.). Recent developments in data science and intelligent analysis of information. ICDSIAI 2018. Advances in Intelligent Systems and Computing. Vol. 836. Cham: Springer, 2019. P. 50–58. https://doi.org/10.1007/978-3-319-97885-7_6.

  11. Khatibzadeh H., Mohebbi V. Monotone and pseudo-monotone equilibrium problems in Hadamard spaces. J. of the Australian Mathematical Society. 2019. P. 1–23. https://doi.org/10.1017/ S1446788719000041.

  12. Khatibzadeh H., Mohebbi V. Approximating solutions of equilibrium problems in Hadamard spaces. Miskolc Mathematical Notes. 2019. Vol. 20, N 1. P. 281–297. https://doi.org/10.18514/MMN. 2019.2361.

  13. Kinderlehrer D. Stampacchia G. An introduction to variational inequalities and their applications. New York: Academic Press, 1980. Russian transl. Moscow: Mir, 1983. 256 p.

  14. Sandrakov G.V. Homogenization of variational inequalities for problems with regular obstacles. Doklady Akademii Nauk. 2004. Vol. 397, Iss. 2. P. 170–173.

  15. Sandrakov G.V. Homogenization of variational inequalities for non-linear diffusion problems in perforated domains. Izvestiya Mathematics. 2005. Vol. 69, Iss. 5. P. 1035–1059. http://dx.doi.org/ 10.1070/IM2005v069n05ABEH002287.

  16. Korpelevich G.M. An extragradient method for finding saddle points and for other problems. Matecon. 1976. Vol. 12, N 4. P. 747–756.

  17. Semenov V.V. A strongly convergent splitting method for systems of operator inclusions with monotone operators. J. of Automation and Information Sciences. 2014. Vol. 46, Iss. 5. P. 45–56. https://doi.org/10.1615/JAutomatInfScien.v46.i5.40.

  18. Semenov V.V. Hybrid splitting methods for the system of operator inclusions with monotone operators. Cybernetics and Systems Analysis. 2014. Vol. 50, N 5. P. 741–749. https://doi.org/ 10.1007/s10559-014-9664-y.

  19. Denisov S.V., Semenov V.V., Chabak L.M. Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators. Cybernetics and Systems Analysis. 2015. Vol. 51, N 5. P. 757–765. https://doi.org/10.1007/s10559-015-9768-z.

  20. Verlan D.A., Semenov V.V., Chabak L.M. A strongly convergent modified extragradient method for variational inequalities with non-Lipschitz operators. J. of Automation and Information Sciences. 2015. Vol. 47, Iss. 7. P. 31–46. https://doi.org/10.1615/JAutomatInfScien.v47.i7.40.

  21. Semenov V.V. Modified extragradient method with Bregman divergence for variational inequalities. J. of Automation and Information Sciences. 2018. Vol. 50, Iss. 8. P. 26–37. https://doi.org/ 10.1615/JAutomatInfScien.v50.i8.30.

  22. Denisov S.V., Nomirovskii D.A., Rublyov B.V., Semenov V.V. Convergence of extragradient algorithm with monotone step size strategy for variational inequalities and operator equations. J. of Automation and Information Sciences. 2019. Vol. 51, Iss. 6. P. 12–24. https://doi.org/ 10.1615/JAutomatInfScien.v51.i6.20.

  23. Denisov S.V., Semenov V.V., Stetsyuk P.I. Bregman extragradient method with monotone rule of step adjustment. Cybernetics and Systems Analysis. 2019. Vol. 55, N 3. P. 377–383. https://doi.org/ 10.1007/s10559-019-00144-5.

  24. Popov L.D. A modification of the Arrow–Hurwicz method for search of saddle points. Mathematical Notes of the Academy of Sciences of the USSR. 1980. Vol. 28, Iss. 5. P. 845–848. https://doi.org/ 10.1007/BF01141092.

  25. Semenov V.V. A version of the mirror descent method to solve variational inequalities. Cybernetics and Systems Analysis. 2017. Vol. 53, N 2. P. 234–243. https://doi.org/10.1007/s10559-017-9923-9.

  26. Nomirovskii D.A., Rublyov B.V., Semenov V.V. Convergence of two-stage method with Bregman divergence for solving variational inequalities. Cybernetics and Systems Analysis. 2019. Vol. 55, N 3. P. 359–368. https://doi.org/10.1007/s10559-019-00142-7.

  27. Bacak M. Convex analysis and optimization in Hadamard spaces. Berlin; Boston: De Gruyter, 2014. viii+185 p.

  28. Kirk W., Shahzad N. Fixed point theory in distance spaces. Cham: Springer, 2014. xii+173 p. https://doi.org/10.1007/978-3-319-10927-5.

  29. Burago D., Burago Yu., Ivanov S. A course in metric geometry. Graduate Studies in Mathematics. 2001. Vol. 33. Providence: AMS. xiv+415 p.

  30. Бураго Ю.Д., Залгаллер В.А. Введение в риманову геометрию. Москва: ЛЕНАНД, 2019. 320 с.

  31. Gidel G., Berard H., Vincent P., Lacoste-Julien S. A variational inequality perspective on generative adversarial networks. arXiv preprint arXiv:1802.10551. 2018.
© 2020 Kibernetika.org. All rights reserved.