Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
UDC 004.274
A.A. Barkalov1, L.A. Titarenko2, A.V. Baiev3, A.V. Matviienko4


1 Uniwersytet Zielonogorski, Zielona Gura, Poland, and Vasyl’ Stus Donetsk National University, Vinnytsia, Ukraine

A.Barkalov@iie.uz.zgora.pl

2 Uniwersytet Zielonogorski, Zielona Gura, Poland,
and Kharkiv National University of Radio Electronics, Kharkiv, Ukraine

L.Titarenko@iie.uz.zgora.pl

3 Vasyl’ Stus Donetsk National University and Peoly LLC, Vinnytsia, Ukraine

a.baev@donnu.edu.ua

4 V.M. Glushkov Institute of Cybernetics, National Academy
of Sciences of Ukraine, Kyiv, Ukraine

avmatv@ukr.net

OPTIMIZING THE SCHEME OF A COMBINED AUTOMATON IN THE ASIC BASIS

Abstract. A method is proposed for decreasing the area of the ASIC occupied by the scheme of a combined automaton. The method is based on encoding of the classes of pseudoequivalent states of Moore automaton by additional variables.  This approach leads to a four-level scheme implemented as two nano-PLAs and decreases the area of nano-PLA generating microoperations of the Moore automaton and additional variables. An example of synthesis with the use of the proposed scheme is considered. The results of the efficiency analysis of the proposed method with the use of a library of benchmarks are presented.

Keywords: combined microprogrammed automaton, synthesis, nano-PLA, ASIC, pseudo-equivalent states.



FULL TEXT

REFERENCES

  1. Barkalov A., Titarenko L., Mazurkiewicz M. Foundations of embedded systems. Berlin: Springer, 2019. 167 p.

  2. Marwedel P. Embedded system design: Embedded systems, foundations of cyber-physical systems and the Internet of Things. Berlin: Springer, 2017. 612 p.

  3. Gajski D.D., Abdi S., Gerstlauer A., Schirner G. Embedded system design: Modeling, synthesis and verification. New York: Springer, 2009. 352 p.

  4. Baranov S. Logic and system design of digital systems. Tallin: TUT Press, 2008. 267 p.

  5. Czerwinski R., Kania D. Finite state machines logic synthesis for complex programmable logic devices. Lecture Notes in Electrical Engineering. Vol. 231. Berlin; Heidelberg: Springer-Verlag, 2013. 172 p.

  6. Smith M. Application specific integrated circuits. Boston: Addison-Wesley, 1997. 632 p.

  7. Nababi Z. Embedded core design with FPGAs. New York: McGraw-Hill, 2008. 418 p.

  8. Baranov S. Logic synthesis for control automata. Dordrecht: Kluwer Academic Publishers, 1994. 312 p.

  9. DeMicheli G. Synthesis and optimization of digital circuits. New York: McGraw-Hill, 1994. 634 p.

  10. Barkalov A.A., Titarenko L.A., Vizor Ya.E., Matvienko A.V., Gorina V.V. Reducing the number of LUT elements in the combined machine circuit. Upravlyayushchiye sistemy i mashiny. 2016. N 3. P. 16–22.

  11. Baranov S., Levin L., Keren O., Karpovsky M. Designing fault tolerant FSM by nano-PLA. Proc. of 15th International On-Line Testing Symposium. Lisbon, 2009. P. 216–220.

  12. Naemi H., DeHon A. A greedy algorithm for toleranting crosspoints in NanoPLA design. Proc. of IEEE International Competence on Field-Programmable Technology. Piscataway, NJ, 2004. P. 49–56.

  13. Baranov S.I., Sklyarov V.A. Digital devices based on programmable LSIs with a matrix structure [in Russian]. Moscow: Radio i svyaz', 1986. 272 p.

  14. Barkalov A.A. Principles of optimizing the logic circuit of the Moore firmware machine. Kibernetika i sistemnyj analiz. 1998. N 1. P. 65–72.

  15. Soloviev V.V. Design of digital circuits based on programmable logic integrated circuits [in Russian]. Moscow: Goryachaya liniya — TELEKOM, 2001. 636 p.

  16. Barkalov A.A., Titarenko L.A., Vizor Ya.E., Matvienko A.V. Synthesis of a combined microprogramming machine in FPGA basis. Komp’yuterni zasoby, merezhi ta systemy. Kyiv: V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, 2015. Iss. 14. P. 32–39.

  17. Barkalov A.A., Titarenko L.A., Vizor Ya.E., Matvienko A.V. Implementation of the scheme of the combined firmware in the FPGA basis. Problems of informatization and management. Kyiv: National Aviation University, 2015. Iss. 3(51). P 5–13.

  18. Barkalov A.A. Multilevel programmable logic array schemes for microprogrammed automata. Kibernetika. 1994. N 4. P. 22–29.

  19. Barkalov A.A., Titarenko L.A., Barkalov A.A. (Jr.). Structural decomposition as a tool for the optimization of an FPGA-based implementation of a Mealy FSM. Kibernetika i sistemnyj analiz. 2012. N 2. P. 177–187.

  20. Barkalov A., Titarenko L., Kolopenczyk M., Mielcarek K., Bazydlo G. Logic synthesis for FPGA-based finite state machines. Berlin: Springer, 2016. 280 p.

  21. Achasova S.M. Algorithms for the synthesis of automata on programmable logic matrices [in Russian]. Moscow: Sov. radio, 1987. 132 p.

  22. Yang S. Logic synthesis and optimization benchmarks user guide. Version 3.0. Microelectronics Center of North Carolina, 1991. 43 p.

  23. Barkalov A.A., Titarenko L.A., Tsololo S.A. Optimization of a logic circuit implementing a Moore automaton in CPLD basis. Kibernetika i sistemnyj analiz. 2009. N 5. P. 180–186.

  24. Barkalov A.A., Titarenko L.A., Lavrik A.S. Reduction of hardware costs in a code division control device. Kibernetika i sistemnyj analiz. 2013. N 3. P. 113–123.

  25. Palagin A.V., Opanasenko V.N. 3 Design and application of the PLD-based reconfigurable devices. In: Design of Digital Systems and Devices. Lecture Notes in Electrical Engineering. Adamski M., Barkalov A., Wegrzyn M. (Eds.). Berlin; Heidelberg: Springer, 2011. Vol 79. P. 59–91.

  26. Opanasenko V.N., Kryvyi S.L. Synthesis of neural-like networks on the basis of conversion of cyclic hamming codes. Cybernetics and Systems Analysis. 2017. Vol. 53, N 4. P. 627–635. https://doi.org/10.1007/s10559-017-9965-z.
© 2020 Kibernetika.org. All rights reserved.