Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
UDC 517.9
L.A. Vlasenko1, A.G. Rutkas2, V.V. Semenets3, A.A. Chikrii4


1 Kharkiv National University of Radio Electronics, Kharkiv

lara@rutrus.com

2 Kharkiv National University of Radio Electronics, Kharkiv

anatoly@rutrus.com

3 Kharkiv National University of Radio Electronics, Kharkiv

valery.semenets@nure.ua

4 V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine

chik@insyg.kiev.ua

ON THE DECOMPOSITION OF DESCRIPTOR CONTROL SYSTEMS

Abstract. We establish the conditions to decompose a complicated descriptor control system into simpler subsystems. The system state and input are described by equations not solved with respect to the derivative of the state. We consider two types of decompositions: sequential and parallel decompositions. The decomposition conditions are formulated in terms of the existence of invariant pairs of subspaces for operator pencils consisting of system coefficients. The results are illustrated on an example of a descriptor system that describes transient states in a radio-engineering filter. We carry out the cascade parallel decomposition of forth-order filter into the simplest first-order filters, each containing one inertial element.

Keywords: descriptor control system, characteristic operator pencil, sequential decomposition, parallel decomposition, cascade-parallel decomposition of radio-engineering filter.



FULL TEXT

REFERENCES

  1. Chen B.M., Lin Z., Shamash Y. Linear systems theory: A structural decomposition approach. Boston; Basel; Berlin: Birkhauser, 2004. 421 p.

  2. Duan G.R. Analysis and design of descriptor linear systems. New York; Dordrecht; Heidelberg; London: Springer, 2010. 494 p.

  3. Vlasenko L.A., Rutkas A.G., Semenets V.V. Sequential composition and decomposition of descriptor control systems. Journal of Automation and Information Sciences. 2018. Vol. 50, Iss. 9. P. 60–75. http://doi.org/10.1615/JAutomatInfScien.v50.i9.50.

  4. Rutkas A.G. Spectral methods for studying degenerate differential-operator equations. Journal of Mathematical Sciences. 2007. Vol. 144, Iss. 4. P. 4246–4263. http://doi.org/10.1007/s10958-007-0267-2.

  5. Vlasenko L.A., Rutkas A.G., Semenets V.V., Chikrii A.A. On the optimal impulse control in descriptor systems. Journal of Automation and Information Sciences. 2019. Vol. 51, Iss. 5. P. 1–15. https://doi.org/10.1615/JAutomatInfScien.v51.i5.10.

  6. Vlasenko L.A., Rutkas A.G., Semenets V.V., Chikrii A.A. Stochastic optimal control of a descriptor system. Cybernetics and Systems Analysis. 2020. Vol. 56, N 2. P. 204–212. https://doi.org/10.1007/ s10559-020-00236-7.

  7. Chernousko F.L. Decomposition and synthesis of control in nonlinear dynamic systems. Proceedings of the Mathematical Institute RAS. 1995. Vol. 211. P. 457–472.

  8. Curtain R.F., Zwart H. An introduction to infinite-dimensional linear systems theory. New York: Springer-Verlag, 1995. 713 p.

  9. Belinskaya Yu.S., Chetverikov V.N. Decomposition of systems and point-to-point control. . Vestnik MGTU im. N.E. Bauman. Ser. Natural Sciences. 2017. N 6 (75). P. 103–125. https://doi.org/10.18698/1812-3368-2017-6-103-125.

  10. Kalman R., Falb P., Arbib M. Essays on the mathematical theory of systems [in Russian]. Moscow: Mir, 1971. 400 p.

  11. Helton J.W., Ball J.A. The cascade decompositions of a given system vs the linear fractional decompositions of its transfer function. Integral Equations and Operator Theory. 1982. Vol. 5, Iss. 1. P. 341–385. https://doi.org/10.1007/BF01694044.

  12. Guillemin E.A. Synthesis of passive circuits. Moscow: Svyaz', 1970. 720 p.

  13. Vlasenko L.A. Existence and uniqueness theorems for an implicit delay differential equation. Differential Equations. 2000. Vol. 36, Iss. 5. P. 689–694. http://doi.org/10.1007/BF02754227.

  14. Vlasenko L. Implicit linear time-dependent differential-difference equations and applications. Mathematical Methods in the Applied Sciences. 2000. Vol. 23, Iss. 10. P. 937–948. https://doi.org/10.1002/1099-1476(20000710)23:10<937::AID-MMA144>3.0.CO;2-B.

  15. Chikrii G.Ts. Using the effect of information delay in differential pursuit games. Cybernetics and Systems Analysis. 2007. Vol. 43, N 2. P. 233–245. https://doi.org/10.1007/s10559-007-0042-x.

  16. Vlasenko L.A., Rutkas A.G. Optimal control of a class of random distributed Sobolev type systems with aftereffect. Journal of Automation and Information Sciences. 2013. Vol. 45, Iss. 9. P. 65–76. https://doi.org/10.1615/JAutomatInfScien.v45.i9.60.

  17. Chikrii, A.A., Chikrii, G.Ts. Game problems of approach for quasilinear systems of general form. Proc. Steklov Institute of Mathematics. 2019. Vol. 304, Iss. 1 Supplement. P. S44–S58. https:// doi.org/10.1134/S0081543819020068.

  18. Chikrii A.A., Matychyn I.I., Chikrii K.A. Differential games with impulse control. Advances in Dynamic Game Theory. Annals of the International Society of Dynamic Games. Boston: Birkhuser, 2007. Vol. 9. P. 37–55. https://doi.org/10.1007/978-0-8176-4553-3_2.

  19. Vlasenko L.A., Myshkis A.D., Rutkas A.G. On a class of differential equations of parabolic type with impulsive action. Differential Equations. 2008. Vol. 44, Iss. 2. P. 231–240. https://doi.org/ 10.1134/S0012266108020110.

  20. Nakonechnyi A.G., Kapustyan E.A., Chikrii A.A. Control of impulse systems in conflict situation. Journal of Automation and Information Sciences. 2019. Vol. 51, Iss. 9. P. 1–11. https://doi.org/ 10.1615/JAutomatInfScien.v51.i9.10.

  21. Dziubenko K.G., Chikrii A.A. An approach problem for a discrete system with random perturbations. Cybernetics and Systems Analysis. 2010. Vol. 46, N 2. P. 271–281. https://doi.org/10.1007/ s10559-010-9204-3.

  22. Vlasenko L.A., Rutkas A.G. Stochastic impulse control of parabolic systems of Sobolev type. Differential Equations. 2011. Vol. 47, Iss. 10. P. 1498–1507. http://doi.org/10.1134/S0012266111100132.

  23. Vlasenko L.A., Rutkas A.G., Chikriy A.A. On a differential game in a stochastic system. Proceedings of the Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences. 2019. Vol. 25, N 3. P. 45–61. https://doi.org/10.21538/0134-4889-2019-25-3-45-61.

  24. Vlasenko L.A., Rutkas A.G. On a differential game in a system described by an implicit differential-operator equation. Differential Equations. 2015. Vol. 51, Iss. 6. P. 798–807. https:// doi.org/10.1134/S0012266115060117.

  25. Vlasenko L.A., Chikrii A.A. On a differential game in a system with distributed parameters. Proc. of the Steklov Institute of Mathematics. 2016. Vol. 292, Iss. 1 Supplement. P. 276–285. https://doi.org/ 10.1134/S0081543816020243.

  26. Rutkas A., Vlasenko L. On a differential game in a nondamped distributed system. Mathematical Methods in the Applied Sciences. 2019. Vol. 42, Iss. 18. P. 6155–6164. https://doi.org/10.1002/ mma.5712.
© 2020 Kibernetika.org. All rights reserved.