Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 519.7
A.N. Alekseychuk1, A.A. Matiyko2


1 National Technical University of Ukraine
“Igor Sikorsky Kyiv Polytechnic Institute,” Kyiv, Ukraine

alex-dtn@ukr.net

2 National Technical University of Ukraine
“Igor Sikorsky Kyiv Polytechnic Institute,” Kyiv, Ukraine

alexm1710@ukr.net

ACHIEVABLE UPPER BOUND FOR THE SUP-NORM OF THE ELEMENTS’ PRODUCT IN
THE RING OF TRUNCATED POLYNOMIALS AND ITS APPLICATION TO THE ANALYSIS
OF NTRU-LIKE CRYPTOSYSTEMS

Abstract. The answer to the question posed in 2008 by V. Lyubashevsky about an efficient algorithm for calculating the parameter θ ( f ) that characterizes the value of the sup-norm of the elements’ product in the ring of truncated polynomials modulo a given mimic polynomial f ( x ) with real coefficients is obtained. The application of the obtained results to the estimation of decryption failure probability of messages in NTRU-like cryptosystems is considered.

Keywords: lattice-based cryptography, truncated polynomial ring, sup-norm of polynomials’ product, NTRU-like cryptosystem, decryption failure probability.



FULL TEXT

REFERENCES

  1. Albrecht M.R., Curtis B.R., Deo A., Davidson A., Player R., Postlethwaite E.W., Virdia F., Wunderer T. Estimate all the {LWE, NTRU} schemes! Cryptology ePrint Archive, Report 2018/331. URL: http://eprint.iacr.org/2018/331.

  2. Lyubashevsky V. Towards practical lattice-based cryptography, Ph.D, 2008. URL: https://escholarship/org/uc/item/0141w93p.

  3. Cartan A. Differential calculus. Differential forms [Russian translation]. Moscow: Mir, 1971. 392 p.

  4. Hoeffding W. Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 1963. Vol. 58, N 301. P. 13–30.

  5. Hirschhorn P., Hoffstein J., Howgrave-Graham N., Whyte W. Choosing NTRU parameters in light of combined lattice reduction and MITM approaches. Applied Cryptography and Network Security, LNCS. 2009. Vol. 5536. P. 437–455.

  6. Hoffstein J., Pipher J., Schanck J.M., Silverman J.H., Whyte W., Zhang Z. Choosing parameters for NTRUEncrypt. Cryptology ePrint Archive. Report 2015/708. URL: http://eprint.iacr.org/2015/708.

  7. Chen C., Hoffstein J., Whyte W., Zhang Z. NIST PQ Submission: NTRUEncrypt. A lattice based algorithm. URL: https://cscr.nist.gov/Projects/Post-Quantum-Cryptography, 2017.

  8. Lyubashevsky V., Seiler G. NTTRU: Truly fast NTRU using NTT. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019. Vol. 3. P. 180–201.

  9. Matiyko О.А., Alekseychuk A.N. Bounds of decryption failure probability in NTRUEncrypt encryption scheme for a fixed key. Ukrainian Information Security Research Journal. 2018. Vol. 20, N 2. P. 89–94.




© 2021 Kibernetika.org. All rights reserved.