Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 681.322.012
L.D. Jelfimova1


1 V.M. Glushkov Institute of Cybernetics, National Academy
of Sciences of Ukraine, Kyiv, Ukraine

larisaelf@gmail.com

A FAST RECURSIVE ALGORITHM FOR MULTIPLYING MATRICES OF ORDER n = 3q (q  > 1)

Abstract. A new fast recursive algorithm is proposed for multiplying matrices of order n = 3q (q  > 1). This algorithm is based on hybrid algorithm for multiplying matrices of odd order n = 3μ (μ = 2q − 1, q  > 1), which is used as basic algorithm for μ = 3q (q  > 0). As compared with the well-known block-recursive Laderman’s algorithm, the new algorithm minimizes by 10.4% the multiplicative complexity equal to W M ≈ 0.896n2.854 multiplication operations at recursive level d = log3n − 3 and reduces the computation vector by three recursive steps. The multiplicative complexity of the basic and recursive algorithms are estimated.

Keywords: linear algebra, Laderman’s block-recursive matrix multiplication algorithm, family of fast hybrid matrix multiplication algorithms, Winograd’s algorithm for inner product.



FULL TEXT

REFERENCES

  1. Elfimova L.D. New fast recursive matrix multiplication algorithm. Kibernetika i sistemnyj analiz. 2019. Vol. 55, N 4. P. 33–38.

  2. Elfimova L.D., Kapitonova Yu.V. Fast algorithm for matrix multiplication and its efficient implementation on systolic arrays. Kibernetika i sistemnyj analiz. 2001. N 1. P. 135–150.

  3. Elfimova L.D. Fast hybrid matrix multiplication algorithms. Kibernetika i sistemnyj analiz. 2010. Vol. 46, N 4. P. 49–59.

  4. Elfimova L.D. New fast hybrid matrix multiplication algorithms. Kibernetika i sistemnyj analiz. 2011. Vol. 47, N 6. P. 59–67.

  5. Strassen V. Gaussian elimination is not optimal. Numerische Mathematik. 1969. Vol. 13. P. 354–356.

  6. Winograd S. On multiplication of 22 matrices. Linear Algebra and Its Application. 1971. Vol. 4. P. 381–388.

  7. Laderman J.D. A noncommutative algorithm for multiplying 3x3 matrices using 23 multiplications. Bulletin of the American Mathematical Society. 1976. Vol. 82, N 1. P. 126–128.

  8. Winograd S.A. A new algorithm for inner product. IEEE Transactions on Computers. 1968. Vol. С-18. P. 693–694.




© 2021 Kibernetika.org. All rights reserved.