Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 519.2
L.S. Stoikova1


1 Kyiv, Ukraine

stojk@ukr.net

ACCURATE ESTIMATES OF THE PROBABILITY OF A NON-NEGATIVE UNIMODAL
RANDOM VALUE INTO SPECIAL INTERVALS WITH INCOMPLETE INFORMATION

Abstract. Exact lower estimations are found for the probability that non-negative unimodal random variable μ gets in the intervals (m − ασμ , m + ασμ ) where the mode m coincides with fixed first moment of random variable μ, σμ is standard deviation and m < σμ. The parameter α satisfies the inequalities 0 < α < m / σμ < 1. The results of this study may be useful in evaluating the probability of hitting the projectile zone when aimed shooting.

Keywords: linear functionals of unimodal distribution functions, extremal values, transformation of Johnson–Rogers, exact generalized Chebyshoff inequalities for linear functionals of unimodal distribution functions.



FULL TEXT

REFERENCES

  1. Stoikova L.S., Kovalchuk L.V. Exact estimations for some linear functionals of unimodal distribution functions under incomplete information. Kibernetika i sistemnyj analiz. 2019. Vol. 55, N 6. P. 41–53.

  2. Johnson N.L., Rogers C.A. The moment problem for unimodal distribution. Ann. Math. Stat. 1951. Vol. 22. P. 433–439.

  3. Karlin S., Stadden V. Chebyshev systems and their application in analysis and statistics [Russian translation]. Moscow: Nauka, 1976. 568 p.

  4. Ventzel E.S., Ovcharov L.A. Probability theory [in Russian]. Moscow: Nauka, 1973. 365 p.

  5. Kovalenko I.N., Kuznetsov N.Yu., Pegg Ph.A. Mathematical theory of reliability of time dependent systems with practical applications. Chichester: Wiley, 1997. 303 p.

  6. Kovalenko I.N. A review of my scientific publications. Masters and coworkers. Kibernetika i sistemnyj analiz. 2010. N 3. P. 3–27.

  7. Kovalenko I.N. Influence of Boris V. Gnedenko’s Probabilistic-Statistical School on the Development of Cybernetics and Informatics. Kibernetika i sistemnyj analiz. 2017. Vol. 53, N 6. P. 41–53.

  8. Stoikova L.S. Generalized Chebyshev inequalities and their application in the mathematical theory of reliability. Kibernetika i sistemnyj analiz. 2010. Vol. 3. P. 139–143. Kibernetika i sistemnyj analiz. 2010. N 3. P. 139–143.




© 2021 Kibernetika.org. All rights reserved.