Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 519.6
D.O. Protektor1, V.M. Kolodyazhny2, D.O. Lisin3, O.Yu. Lisina4


1 V.N. Karazin Kharkiv National University, Kharkiv, Ukraine

d.protector@karazin.ua

2 Kharkiv National Automobile and Highway University, Kharkiv, Ukraine

vladmax1949@ukr.net

3 V.N. Karazin Kharkiv National University, Kharkiv, Ukraine

d.lisin@karazin.ua

4 V.N. Karazin Kharkiv National University, Kharkiv, Ukraine

o.lisina@karazin.ua

A MESHLESS METHOD FOR SOLVING THREE-DIMENSIONAL
NONSTATIONARY HEAT CONDUCTION PROBLEMS IN ANISOTROPIC MATERIALS

Abstract. The article deals with a meshless method for solving three-dimensional nonstationary heat conduction problems in anisotropic materials. A combination of dual reciprocity method using anisotropic radial basis function and method of fundamental solutions is used to solve the boundary-value problem. The method of fundamental solutions is used for obtain the homogenous part of the solution; the dual reciprocity method with the use of anisotropic radial basis functions allows obtaining a partial solution. The article shows the results of numerical solutions of two benchmark problems obtained by the developed numerical method; average relative, average absolute, and maximum errors are calculated.

Keywords: meshless method, boundary-value problems, anisotropic materials, dual reciprocity method, method of fundamental solution, anisotropic radial basis functions.



FULL TEXT

REFERENCES

  1. Sergienko I.V., Deineka V.S. Numerical solution of some inverse problems of unsteady heat conduction using pseudoinverse matrices. Kibernetika i sistemnyj analiz. 2012. N 5. P. 49–70.

  2. Varenyuk N.A., Galba E.F., Sergienko I.V. Variational formulations and discretization of the boundary value problem of the theory of elasticity for stresses given on the boundary of the region. Kibernetika i sistemnyj analiz. 2020. Vol. 56, N 6. P. 46–60.

  3. Gingold R.A., Monaghan J.J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society. 1977. Vol. 181, N 3. P. 375–389. https://doi.org/10.1093/mnras/181.3.375.

  4. Lucy B.L. A numerical approach to testing the fission hypothesis. Astronomical Journal. 1977. Vol. 82, N 12. P. 1013–1024. https://doi.org/10.1086/112164.

  5. Liu G.R. Mesh free methods: Moving beyond the finite element method. CRC Press, 2003.

  6. Nayroles B., Touzot G., Villon P. Generalizing the finite element method: Diffuse approximation and diffuse elements. Computational Mechanics. 1992. Vol. 10. P. 307–318. https://doi.org/10.1007/ BF00364252.

  7. Belytschko T., Lu Y.Y., Gu L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering. 1994. Vol. 37, N 2. P. 229–256. https://doi.org/10.1002/nme.1620370205.

  8. Liu W.K., Jun S., Li S., Jonathan A., Belytschko T. Reproducing kernel particle methods for structural dynamics. International Journal for Numerical Methods in Engineering. 1995. Vol. 38, N 10. P. 1655–1679. https://doi.org/10.1002/nme.1620381005.

  9. Onate E., Idelsohn S., Zienkiewicz O.C., Taylor R.L., Sacco C. A stabilized finite point method for analysis of fluid mechanics problems. Computer Methods in Applied Mechanics and Engineering. 1996. Vol. 139. P. 315–346. https://doi.org/10.1016/S0045-7825(96)01088-2.

  10. Onate E., Idelsohn S., Zienkiewicz O.C., Taylor R.L. A finite point method in computational mechanics. Application to convective transport and fluid flow. International Journal for Numerical Methods in Engineering. 1996. Vol. 39, N 22. P. 3839–3866. https://doi.org/10.1002/(SICI)1097-0207(19961130) 39:22<3839::AID-NME27>3.0.CO;2-R.

  11. Kansa E.J. Multiquadrics — a scattered data approximation scheme with applications to computational fluid-dynamics — I surface approximations and partial derivative estimates. Computers & Mathematics with Applications. 1990. Vol. 19. P. 127–145. https://doi.org/10.1016/0898-1221(90)90270-T.

  12. Kansa E.J. Multiquadrics — A scattered data approximation scheme with applications to computational fluid-dynamics — II solutions to parabolic, hyperbolic and elliptic partial differential equations. Computers & Mathematics with Applications. 1990. Vol. 19. P. 147–161. https://doi.org/ 10.1016/0898-1221(90)90271-K.

  13. Lee C.K., Liu X., Fan S.C. Local multiquadric approximation for solving boundary value problems. Computational Mechanics. 2003. Vol. 30. P. 396–409. https://doi.org/10.1007/s00466-003-0416-5.

  14. Ingber M.S., Chen C.S., Tanski J.A. A mesh free approach using radial basis functions and parallel domain decomposition for solving three-dimensional diffusion equations. International Journal for Numerical Methods in Engineering. 2004. Vol. 60, N 13. P. 2183–2201. https://doi.org/10.1002/ nme.1043.

  15. Bogomolny A. Fundamental solutions method for elliptic boundary value problems. SIAM Journal on Numerical Analysis. 1985. Vol. 22, N 4. P. 644–669. https://doi.org/10.2307/2157574.

  16. Hon Y.C., Chen W. Boundary knot method for 2D and 3D Helmholtz and convection–diffusion problems under complicated geometry. International Journal for Numerical Methods in Engineering. 2003. Vol. 56, N 13. P. 1931–1948. https://doi.org/10.1002/nme.642.

  17. Rostamian M., Shahrezae A. Application of meshless methods for solving an inverse heat conduction problem. European Journal of Pure and Applied Mathematics. 2016. Vol. 9, N 1. P. 64–83.

  18. Wang H., Qin Q-H., Kang Y-L. A meshless model for transient heat conduction in functionally graded materials. Computational Mechanics. 2006. Vol. 38. P. 51–60. https://doi.org/10.1007/ s00466-005-0720-3.

  19. Xiao J.-E., Ku C.-Y., Huang W.-P., Su Y., Tsai Y.-H. A novel hybrid boundary-type meshless method for solving heat conduction problems in layered materials. Applied Sciences. 2018. Vol. 8, N 10. P. 1–24. https://doi.org/10.3390/app8101887.

  20. Karagiannakis N.P., Bali N., Skouras E.D., Burganos V.N. An efficient meshless numerical method for heat conduction studies in particle aggregates. Applied Sciences. 2020. Vol. 10, N 3. P. 1–19. https://doi.org/10.3390/app10030739.

  21. Zaheer-ud-Din, Ahsan M., Ahmad M., Khan W., Mahmoud E.E., Abdel-Aty A.-H. Meshless analysis of nonlocal boundary value problems in anisotropic and inhomogeneous media. Mathematics. 2020. Vol. 8, N 11. P. 1–19. https://doi.org/10.3390/math8112045.

  22. Guan Y., Grujicic R., Wang X., Dong L., Atluri S.N. A new meshless “fragile points method” and a local variational iteration method for general transient heat conduction in anisotropic nonhomogeneous media. Part I: Theory and implementation. Numerical Heat Transfer, Part B: Fundamentals. An International Journal of Computation and Methodology. 2020. Vol. 78, N. 2. P. 71–85. https://doi.org/10.1080/10407790.2020.1747278.

  23. Guan Y., Grujicic R., Wang X., Dong L., Atluri S.N. A new meshless “fragile points method” and a local variational iteration method for general transient heat conduction in anisotropic nonhomogeneous media. Part II: Validation and discussion. Numerical Heat Transfer, Part B: Fundamentals. An International Journal of Computation and Methodology. 2020. Vol. 78, N 2. P. 86–109. https://doi.org/10.1080/10407790.2020.1747283.

  24. Carslaw H.S., Jaeger J.C. Conduction of heat in solids. 2nd edition. London: Oxford University Press, 1959. 510 p.

  25. Langtangen H.P. Introduction to computing with finite difference methods. University of Oslo, 2014. 97 p.

  26. Sergienko I.V., Khimich A.N., Yakovlev M.F. Methods for obtaining reliable solutions to systems of linear algebraic equations. Kibernetika i sistemnyj analiz. 2011. N 1. P. 68–80.

  27. Kolodyazhny V.M., Rvachev V.A. Atomic radial basis functions in numerical algorithms for solving boundary value problems for the Laplace equation. Kibernetika i sistemnyj analiz. 2008. Vol. 44, N 4. P. 165–178.




© 2021 Kibernetika.org. All rights reserved.