УДК 519.6
БЕССЕТОЧНЫЙ МЕТОД РЕШЕНИЯ ТРЕХМЕРНЫХ НЕСТАЦИОНАРНЫХ ЗАДАЧ
ТЕПЛОПРОВОДНОСТИ В МАТЕРИАЛАХ С АНИЗОТРОПИЕЙ
Аннотация. Рассмотрен бессеточный метод решения трехмерных нестацио-нарных задач теплопроводности в анизотропной среде.
Для решения краевой задачи применяется комбинация метода двойного замещения с использовани-ем анизотропных радиальных базисных
функций с методом фундаменталь-ных решений. Метод фундаментальных решений позволяет получить одно-родное решение,
а метод двойного замещения с использованием анизотроп-ных радиальных базисных функций — частное решение краевой задачи.
Приводятся результаты численных решений двух тестовых задач, получен-ных с использованием разработанного метода,
а также вычисляются средняя относительная, средняя абсолютная и максимальная погрешности.
Ключевые слова: бессеточный метод, краевые задачи, анизотропные мате-риалы, метод двойного замещения,
метод фундаментальных решений, ани-зотропные радиальные базисные функции.
ПОЛНЫЙ ТЕКСТ
Протектор Денис Олегович,
аспірант Харківського національного університету імені В.Н. Каразіна,
d.protector@karazin.ua
Колодяжний Володимир Максимович,
доктор фіз.-мат. наук, професор кафедри Харківського національного автомобільно-дорожнього університету,
vladmax1949@ukr.net
Лісін Денис Олександрович,
кандидат техн. наук, доцент кафедри Харківського національного університету імені В.Н. Каразіна,
d.lisin@karazin.ua
Лісіна Ольга Юліївна,
кандидатка фіз.-мат. наук, доцентка кафедри Харківського національного університету імені В.Н. Кара-зіна,
o.lisina@karazin.ua
СПИСОК ЛИТЕРАТУРЫ
- Сергиенко И.В., Дейнека В.С. Численное решение некоторых обратных задач нестационарной теплопроводности с использованием псевдообратных матриц. Кибернетика и системный анализ. 2012. № 5. С. 49–70.
- Варенюк Н.А., Галба Е.Ф., Сергиенко И.В. Вариационные постановки и дискретизация краевой задачи теории упругости при заданных на границе области напряжениях. Кибернетика и системный анализ. 2020. Т. 56, № 6. С. 46–60.
- Gingold R.A., Monaghan J.J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society. 1977. Vol. 181, N 3. P. 375–389. https://doi.org/10.1093/mnras/181.3.375.
- Lucy B.L. A numerical approach to testing the fission hypothesis. Astronomical Journal. 1977. Vol. 82, N 12. P. 1013–1024. https://doi.org/10.1086/112164.
- Liu G.R. Mesh free methods: Moving beyond the finite element method. CRC Press, 2003.
- Nayroles B., Touzot G., Villon P. Generalizing the finite element method: Diffuse approximation and diffuse elements. Computational Mechanics. 1992. Vol. 10. P. 307–318. https://doi.org/10.1007/ BF00364252.
- Belytschko T., Lu Y.Y., Gu L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering. 1994. Vol. 37, N 2. P. 229–256. https://doi.org/10.1002/nme.1620370205.
- Liu W.K., Jun S., Li S., Jonathan A., Belytschko T. Reproducing kernel particle methods for structural dynamics. International Journal for Numerical Methods in Engineering. 1995. Vol. 38, N 10. P. 1655–1679. https://doi.org/10.1002/nme.1620381005.
- Onate E., Idelsohn S., Zienkiewicz O.C., Taylor R.L., Sacco C. A stabilized finite point method for analysis of fluid mechanics problems. Computer Methods in Applied Mechanics and Engineering. 1996. Vol. 139. P. 315–346. https://doi.org/10.1016/S0045-7825(96)01088-2.
- Onate E., Idelsohn S., Zienkiewicz O.C., Taylor R.L. A finite point method in computational mechanics. Application to convective transport and fluid flow. International Journal for Numerical Methods in Engineering. 1996. Vol. 39, N 22. P. 3839–3866. https://doi.org/10.1002/(SICI)1097-0207(19961130) 39:22<3839::AID-NME27>3.0.CO;2-R.
- Kansa E.J. Multiquadrics — a scattered data approximation scheme with applications to computational fluid-dynamics — I surface approximations and partial derivative estimates. Computers & Mathematics with Applications. 1990. Vol. 19. P. 127–145. https://doi.org/10.1016/0898-1221(90)90270-T.
- Kansa E.J. Multiquadrics — A scattered data approximation scheme with applications to computational fluid-dynamics — II solutions to parabolic, hyperbolic and elliptic partial differential equations. Computers & Mathematics with Applications. 1990. Vol. 19. P. 147–161. https://doi.org/ 10.1016/0898-1221(90)90271-K.
- Lee C.K., Liu X., Fan S.C. Local multiquadric approximation for solving boundary value problems. Computational Mechanics. 2003. Vol. 30. P. 396–409. https://doi.org/10.1007/s00466-003-0416-5.
- Ingber M.S., Chen C.S., Tanski J.A. A mesh free approach using radial basis functions and parallel domain decomposition for solving three-dimensional diffusion equations. International Journal for Numerical Methods in Engineering. 2004. Vol. 60, N 13. P. 2183–2201. https://doi.org/10.1002/ nme.1043.
- Bogomolny A. Fundamental solutions method for elliptic boundary value problems. SIAM Journal on Numerical Analysis. 1985. Vol. 22, N 4. P. 644–669. https://doi.org/10.2307/2157574.
- Hon Y.C., Chen W. Boundary knot method for 2D and 3D Helmholtz and convection–diffusion problems under complicated geometry. International Journal for Numerical Methods in Engineering. 2003. Vol. 56, N 13. P. 1931–1948. https://doi.org/10.1002/nme.642.
- Rostamian M., Shahrezae A. Application of meshless methods for solving an inverse heat conduction problem. European Journal of Pure and Applied Mathematics. 2016. Vol. 9, N 1. P. 64–83.
- Wang H., Qin Q-H., Kang Y-L. A meshless model for transient heat conduction in functionally graded materials. Computational Mechanics. 2006. Vol. 38. P. 51–60. https://doi.org/10.1007/ s00466-005-0720-3.
- Xiao J.-E., Ku C.-Y., Huang W.-P., Su Y., Tsai Y.-H. A novel hybrid boundary-type meshless method for solving heat conduction problems in layered materials. Applied Sciences. 2018. Vol. 8, N 10. P. 1–24. https://doi.org/10.3390/app8101887.
- Karagiannakis N.P., Bali N., Skouras E.D., Burganos V.N. An efficient meshless numerical method for heat conduction studies in particle aggregates. Applied Sciences. 2020. Vol. 10, N 3. P. 1–19. https://doi.org/10.3390/app10030739.
- Zaheer-ud-Din, Ahsan M., Ahmad M., Khan W., Mahmoud E.E., Abdel-Aty A.-H. Meshless analysis of nonlocal boundary value problems in anisotropic and inhomogeneous media. Mathematics. 2020. Vol. 8, N 11. P. 1–19. https://doi.org/10.3390/math8112045.
- Guan Y., Grujicic R., Wang X., Dong L., Atluri S.N. A new meshless “fragile points method” and a local variational iteration method for general transient heat conduction in anisotropic nonhomogeneous media. Part I: Theory and implementation. Numerical Heat Transfer, Part B: Fundamentals. An International Journal of Computation and Methodology. 2020. Vol. 78, N. 2. P. 71–85. https://doi.org/10.1080/10407790.2020.1747278.
- Guan Y., Grujicic R., Wang X., Dong L., Atluri S.N. A new meshless “fragile points method” and a local variational iteration method for general transient heat conduction in anisotropic nonhomogeneous media. Part II: Validation and discussion. Numerical Heat Transfer, Part B: Fundamentals. An International Journal of Computation and Methodology. 2020. Vol. 78, N 2. P. 86–109. https://doi.org/10.1080/10407790.2020.1747283.
- Carslaw H.S., Jaeger J.C. Conduction of heat in solids. 2nd edition. London: Oxford University Press, 1959. 510 p.
- Langtangen H.P. Introduction to computing with finite difference methods. University of Oslo, 2014. 97 p.
- Сергиенко И.В., Химич А.Н., Яковлев М.Ф. Методы получения достоверных решений систем линейных алгебраических уравнений. Кибернетика и системный анализ. 2011. № 1. С. 68–80.
- Колодяжный В.М., Рвачев В.А. Атомарные радиально базисные функции в численных алгоритмах решения краевых задач для уравнения Лапласа. Кибернетика и системный анализ. 2008. Т. 44, № 4. С. 165–178.