UDC 519.8
1 V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
lebedevatt@gmail.com
|
2 V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
nvsemenova@meta.ua
|
3 V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
taniaser62@gmail.com
|
|
STABILITY KERNEL OF MULTICRITERIA OPTIMIZATION PROBLEM
UNDER PERTURBATIONS OF INPUT DATA OF VECTOR CRITERION
Abstract. Based on the concept of the stability kernel for multicriteria optimization problem
of finding Pareto optimal solutions with continuous partial criterion functions and feasible set of arbitrary structure,
the conditions of problem stability with respect to initial data perturbations in vector criterion are established.
Stable belonging of the feasible solutions to certain sets of optimal solutions of the problem is analyzed.
Keywords: multicriteriа optimization problem, vector criterion, Pareto-optimal solutions, Slater set, Smale set, perturbations of initial data, stability, kernel of stability.
FULL TEXT
REFERENCES
- Kozeratskaya L.N., Lebedeva T.T., Sergienko T.I. Partial integer vector optimization problem: stability issues. Kibernetika. 1991. N 1. P. 58–61.
- Kozeratskaya L.N. Vector optimization problems: stability in the space of solutions and in the space of alternatives. Kibernetika i sistemnyj analiz. 1994. N 6. P. 122–133.
- Sergienko I.V., Kozeratskaya L.N., Lebedeva T.T. Stability study and parametric analysis of discrete optimization problem [in Russian]s. Kiev: Nauk. dumka, 1995. 170 p.
- Lebedeva T.T., Semenova N.V., Sergienko T.I. Stability of vector problems of integer optimization: relationship with stability of sets of optimal and non-optimal solutions. Kibernetika i sistemnyj analiz. 2005. N 4. P. 90–100.
- Lebedeva T.T., Sergienko T.I. Stability by vector criterion and constraints of vector integer quadratic programming problem. Kibernetika i sistemnyj analiz. 2006. N 5. P. 63–72.
- Lebedeva T.T., Sergienko T.I. Different types of stability of vector integer optimization problem: general approach. Kibernetika i sistemnyj analiz. 2008. N 3. P. 142–148.
- Lebedeva T.T., Semenova N.V., Sergienko T.I. Qualitative characteristics of stability of vector discrete optimization problems with different optimality principles. Kibernetika i sistemnyj analiz. 2014. Vol. 50, N 2. P. 75–82.
- Lebedeva T.T., Semenova N.V., Sergienko T.I. Properties of perturbed cones ordering the set of feasible solutions of a vector optimization problem. Kibernetika i sistemnyj analiz. 2014. Vol. 50, N 5. P. 71–77.
- Sergienko I.V., Lebedeva T.T., Semenova N.V. On the existence of solutions in vector optimization problems. Kibernetika i sistemnyj analiz. 2000. N 6. P. 39–46.
- Sergienko T.I. Conditions of Pareto optimization problems solvability. Stable and unstable solvability. Butenko S., Pardalos P., Shylo V. (Еds.). Optimization Methods and Applications. Springer Optimization and Its Applications, Springer, Cham. 2017. Vol. 130. P. 457–464.
- Lebedeva T.T., Semenova N.V., Sergienko T.I. Multicriteria Optimization Problem: Resistance to Perturbations of the Input Data of a Vector Criterion. Kibernetika i sistemnyj analiz. 2020. Vol. 56, N 6. P. 107–114.
- Emelichev V.A., Kotov V.M., Kuzmin K.G., Lebedeva T.T., Semenova N.V., Sergienko T.I. Stability and efficient algorithms for solving discrete optimization problems with many criteria and incomplete information. Problemy upravleniya i informatiki. 2014. N 1. P. 53–67.
- Bukhtoyarov S.E., Emelichev V.A. Aspects of stability of a multicriteria integer linear programming problem. Discrete Analysis and Operations Research. 2019. Vol. 26, N 1. P. 5–19.
- Emelichev V., Nikulin Yu. On the quasistability radius for a multicriteria integer linear programming problem of finding extremum solutions. Cybernetics and Systems Analysis. 2019. Vol. 55, N 2. P. 949–957.
- Podinovskiy V.V., Nogin V.D. Pareto-optimal solutions for multicriteria problems [in Russian]. Moscow: Nauka, 1982. 256 p.
- Lyashko I.I., Emelyanov V.F., Boyarchuk O.K. Mathematical analysis. Part 1 [in Ukrainian]. Kyiv: Vyshcha shkola. 1992. 495 p.
- Kozeratskaya L.N. The set of strictly effective points of a partially integer vector optimization problem as a characteristic of its stability. Kibernetika i sistemnyj analiz. 1997. N 6. P. 181–184.