Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 004.274
A.A. Barkalov1, L.A. Titarenko2, A.V. Baiev3, A.V. Matviienko4


1 University of Zielona Gora, Zielona Gora, Poland, and Vasyl’ Stus Donetsk National University, Vinnytsia, Ukraine

A.Barkalov@iie.uz.zgora.pl

2 University of Zielona Gora, Zielona Gora, Poland, and Kharkiv National University of Radio Electronics, Kharkiv, Ukraine

L.Titarenko@iie.uz.zgora.pl

3 Vasyl’ Stus Donetsk National University and Peoly LLC, Vinnytsia, Ukraine

a.baev@donnu.edu.ua

4 V.M. Glushkov Institute of Cybernetics,
National Academy of Sciences of Ukraine, Kyiv, Ukraine

avmatv@ukr.net

OPTIMIZATION OF CMCU WITH CODE SHARING

Abstract. The article proposes a method for reducing the number of LUT elements in the circuit of a compositional microprogram control unit (CMCU) with code sharing. The method is based on two-fold encoding of operator linear chains (OLC). Each chain has a code as an element of the OLC set and as a class element of this set. This approach allows obtaining a two-level microinstruction addressing circuit. The control memory of the CMCU is implemented on the embedded memory blocks. The article considers an example of synthesis and provides an analysis of the proposed method.

Keywords: сompositional microprogram control unit, LUT, EMB, code sharing.


FULL TEXT

REFERENCES

  1. Kubica M., Kania D. Technology mapping oriented to adaptive logic modules. Bulletin of Polish Academy of Sciences. 2019. Vol. 67, N 5. P. 947–956.

  2. Sklyarov V., Skliarova I., Barkalov A., Titarenko L. Synthesis and optimization of FPGA-based systems. Berlin: Springer, 2014. 432 p.

  3. Soloviev V.V. Design of digital circuits based on programmable logic integrated circuits [in Russian]. Moscow: Goryachaya liniya - TELECOM, 2001. 636 p.

  4. Rawski M., Tomaszewicz P., Borowski G., Luba T. Logic synthesis method of digital circuits designed for implementation with embedded memory blocks on FPGAs. Design of Digital Systems and Devises. Lecture Notes in Electrical Engineering. Adamski M., Barkalov A., Wegrzyn M. (Eds.). Vol. 79. Berlin: Springer, 2011. P. 121–144.

  5. Maxfield C. The design warrior’s guide to FPGAs. Orlando: Academic Press, 2004. 542 p.

  6. Grout I. Digital systems design with FPGAs and CPLDs. Amsterdam: Elsevier, 2008. 784 p.

  7. Rawski M., Selvaraj H., Luba T. An application of functional decomposition in ROM-based FSM implementation in FPGA devices. Journal of System Architecture. 2005. Vol. 51, Iss. 6–7. P. 424–434.

  8. Czerwinski R., Kania D. Finite state machines logic synthesis for complex programmable logic devices. Berlin: Springer, 2013. 172 p.

  9. Mishchenko A., Chattarejee S., Bryton R. Improvements to technology mapping for LUT-based FPGAs. IEEE Transactions on CAD. 2006. Vol. 27, N 2. P. 240–253.

  10. Kilts S. Advanced FPGA design: Architecture, implementation and optimization. Willey- IEEE Press, 2007.

  11. Barkalov A.A., Titarenko L.A. Synthesis of composite microprogram control devices [in Russian]. Kharkiv: Collegium, 2007. 304 p.

  12. Barkalov A.A., Titarenko L.A., Efimenko K.N. Optimization of circuits of compositional microprogram control devices implemented on FPGAs. Kibernetika i sistemnyj analiz. 2011. N 1. P. 179–188.

  13. Barkalov A.A., Titarenko L.A. Conversion of codes in compositional microprogram control devices. Kibernetika i sistemnyj analiz. 2011. N 5. P. 107–118.

  14. White paper FPGA architecture. URL: www.altera.com.

  15. Tiwari A., Tomko K. Saving power by mapping finite state machines into embedded memory blocks in FPGAs. Proc. Design, Automation and Test in Europe Conference and Exhibition (Paris, France, 6–20 Feb. 2004). 2004. Vol. 2. P. 916–921.

  16. Scholl C. Functional decomposition with application to FPGA synthesis. Kluwer Academic Publishers, Boston, 2001.

  17. Nowicka M., Luba T., Rawski M. FPGA-based decomposition of Boolean functions: Algorithms and implementations. Proc. of the 6th International Conference on Advanced Computer Systems (Szczecin, 1999). P. 502–509.

  18. Barkalov A., Titarenko L., Mielcatek K. Hardware reduction for LUT-based Mealy FSMs. International Journal of Applied Mathematics and Computer Science. 2018. Vol. 28, N 3. P. 595–607.

  19. Baranov S. Logic synthesis for control automata. Dordrecht: Kluwer Academic Publishers, 1994. 312 p.

  20. Barkalov A., Titarenko L. Logic synthesis for FSM-based control units. Berlin: Springer, 2009. 233 p.

  21. Kuon I., Tessier R., Rose J. FPGA Architecture: Survey and challenges — found trends. Electrical Design Automation. 2008. N 2. P. 135–253.

  22. Yang S. Logic synthesis and optimization benchmarks user guide. Version 3.0. Techn. Rep. Microelectronics Center of North Carolina, 1991. 43 p.

  23. Vivado Design Suite. URL: https://www.xilinx.com/products/design-tools/vivado.html.

  24. Intel® Quartus® Prime Software Suite. URL: https://www.intel.com/content/www/us/en/ software/programmable/quartus-prime/overview.html.

  25. Virtex-7 FPGAs. URL: https://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html.

  26. Barkalov A., Titarenko L., Chmielewski S. Mixed encoding of collections of output variables for LUT-based FSMs. Journal of Circuits, Systems and Computers. 2019. Vol. 28, N 8. P. 1–21.

  27. Garcia-Vargas L., Senhaji-Navarro R. Finite state machines with input multiplexing: A performance study. IEEE Transactions on CAD of Integrated Circuits and Systems. 2015. Vol. 34, Iss. 5. P. 867–871.

  28. Opanasenko V.N., Kryvyi S.L. Synthesis of neural-like networks on the basis of conversion of cyclic Hamming codes. Cybernetics and Systems Analysis. 2017. Vol. 53, N 4. P. 627–635. https://doi.org/10.1007/s10559-017-9965-z.




© 2021 Kibernetika.org. All rights reserved.